Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean

被引:303
作者
Fletcher, SEM
Gruber, N
Jacobson, AR
Doney, SC
Dutkiewicz, S
Gerber, M
Follows, M
Joos, F
Lindsay, K
Menemenlis, D
Mouchet, A
Müller, SA
Sarmiento, JL
机构
[1] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA
[3] Princeton Univ, Princeton, NJ 08544 USA
[4] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
[5] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[6] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland
[7] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[8] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[9] Univ Liege, Astrophys & Geophys Inst, B-4000 Liege, Belgium
关键词
D O I
10.1029/2005GB002530
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[1] Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 +/- 0.25 Pg C yr(-1), scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.
引用
收藏
页数:16
相关论文
共 54 条
[1]   Transports and budgets of total inorganic carbon in the subpolar and temperate North Atlantic -: art. no. 1002 [J].
Alvarez, M ;
Ríos, AF ;
Pérez, FF ;
Bryden, HL ;
Rosón, G .
GLOBAL BIOGEOCHEMICAL CYCLES, 2003, 17 (01)
[2]   REDFIELD RATIOS OF REMINERALIZATION DETERMINED BY NUTRIENT DATA-ANALYSIS [J].
ANDERSON, LA ;
SARMIENTO, JL .
GLOBAL BIOGEOCHEMICAL CYCLES, 1994, 8 (01) :65-80
[3]   Regional changes in carbon dioxide fluxes of land and oceans since 1980 [J].
Bousquet, P ;
Peylin, P ;
Ciais, P ;
Le Quéré, C ;
Friedlingstein, P ;
Tans, PP .
SCIENCE, 2000, 290 (5495) :1342-1346
[4]   Changes in ocean water mass properties: Oscillations or trends? [J].
Bryden, HL ;
McDonagh, EL ;
King, BA .
SCIENCE, 2003, 300 (5628) :2086-2088
[5]   Evaluating global ocean carbon models: The importance of realistic physics [J].
Doney, SC ;
Lindsay, K ;
Caldeira, K ;
Campin, JM ;
Drange, H ;
Dutay, JC ;
Follows, M ;
Gao, Y ;
Gnanadesikan, A ;
Gruber, N ;
Ishida, A ;
Joos, F ;
Madec, G ;
Maier-Reimer, E ;
Marshall, JC ;
Matear, RJ ;
Monfray, P ;
Mouchet, A ;
Najjar, R ;
Orr, JC ;
Plattner, GK ;
Sarmiento, J ;
Schlitzer, R ;
Slater, R ;
Totterdell, IJ ;
Weirig, MF ;
Yamanaka, Y ;
Yool, A .
GLOBAL BIOGEOCHEMICAL CYCLES, 2004, 18 (03) :GB30171-22
[6]   Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models [J].
Dutay, J. -C. ;
Bullister, J. L. ;
Doney, S. C. ;
Orr, J. C. ;
Najjar, R. ;
Caldeira, K. ;
Campin, J. -M. ;
Drange, H. ;
Follows, M. ;
Gao, Y. ;
Gruber, N. ;
Hecht, M. W. ;
Ishida, A. ;
Joos, F. ;
Lindsay, K. ;
Madec, G. ;
Maier-Reimer, E. ;
Marshall, J. C. ;
Matear, R. J. ;
Monfray, P. ;
Mouchet, A. ;
Plattner, G. -K. ;
Sarmiento, J. ;
Schlitzer, R. ;
Slater, R. ;
Totterdell, I. J. ;
Weirig, M. -F. ;
Yamanaka, Y. ;
Yool, A. .
OCEAN MODELLING, 2002, 4 (02) :89-120
[7]   Seasonal sources and sinks of atmospheric CO(2) Direct inversion of filtered data [J].
Enting, I. G. ;
Mansbridge, J. V. .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1989, 41 (02) :111-126
[8]  
Enting I.G., 1994, FUTURE EMISSIONS CON
[9]   Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn [J].
Etheridge, DM ;
Steele, LP ;
Langenfelds, RL ;
Francey, RJ ;
Barnola, JM ;
Morgan, VI .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D2) :4115-4128
[10]   ICE CORE RECORD OF THE C-13/C-12 RATIO OF ATMOSPHERIC CO2 IN THE PAST 2 CENTURIES [J].
FRIEDLI, H ;
LOTSCHER, H ;
OESCHGER, H ;
SIEGENTHALER, U ;
STAUFFER, B .
NATURE, 1986, 324 (6094) :237-238