Copper oxide nanoparticles are highly toxic:: A comparison between metal oxide nanoparticles and carbon nanotubes

被引:1091
作者
Karlsson, Hanna L. [1 ]
Cronholm, Pontus [1 ]
Gustafsson, Johanna [1 ]
Moeller, Lennart [1 ]
机构
[1] Karolinska Inst, Unit Analyt Toxicol, Dept Biosci & Nutr Novum, SE-14157 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
D O I
10.1021/tx800064j
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Since the manufacture and use of nanoparticles are increasing, humans are more likely to be exposed occupationally or via consumer products and the environment. However, so far toxicity data for most manufactured nanoparticles are limited. The aim of this study was to investigate and compare different nanoparticles and nanotubes regarding cytotoxicity and ability to cause DNA damage and oxidative stress. The study was focused on different metal oxide particles (CuO, TiO2, ZnO, CuZnFe2O4, Fe3O4, Fe2O3), and the toxicity was compared to that of carbon nanoparticles and multiwalled carbon nanotubes (MWCNT). The human lung epithelial cell line A549 was exposed to the particles, and cytotoxicity was analyzed using trypan blue staining. DNA damage and oxidative lesions were determined using the comet assay, and intracellular production of reactive oxygen species (ROS) was measured using the oxidation-sensitive fluoroprobe 2',7'-dichlorofluorescin diacetate (DCFH-DA). The results showed that there was a high variation among different nanoparticles concerning their ability to cause toxic effects. CuO nanoparticles were most potent regarding cytotoxicity and DNA damage. The toxicity was likely not explained by Cu ions released to the cell medium. These particles also caused oxidative lesions and were the only particles that induced an almost significant increase (p = 0.058) in intracellular ROS. ZnO showed effects on cell viability as well as DNA damage, whereas the TiO2 particles (a mix of rutile and anatase) only caused DNA damage. For iron oxide particles (Fe3O4, Fe2O3), no or low toxicity was observed, but CuZnFe2O4 particles were rather potent in inducing DNA lesions. Finally, the carbon nanotubes showed cytotoxic effects and caused DNA damage in the lowest dose tested. The effects were not explained by soluble metal impurities. In conclusion, this study highlights the it? vitro toxicity of CuO nanoparticles.
引用
收藏
页码:1726 / 1732
页数:7
相关论文
共 44 条
[1]   The potential risks of nanomaterials: a review carried out for ECETOC [J].
Borm, Paul J. A. ;
Robbins, David ;
Haubold, Stephan ;
Kuhlbusch, Thomas ;
Fissan, Heinz ;
Donaldson, Ken ;
Schins, Roel ;
Stone, Vicki ;
Kreyling, Wolfgang ;
Lademann, Jurgen ;
Krutmann, Jean ;
Warheit, David ;
Oberdorster, Eva .
PARTICLE AND FIBRE TOXICOLOGY, 2006, 3 (01)
[2]   In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility [J].
Brunner, Tobias J. ;
Wick, Peter ;
Manser, Pius ;
Spohn, Philipp ;
Grass, Robert N. ;
Limbach, Ludwig K. ;
Bruinink, Arie ;
Stark, Wendelin J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (14) :4374-4381
[3]   Acute toxicological effects of copper nanoparticles in vivo [J].
Chen, Z ;
Meng, HA ;
Xing, GM ;
Chen, CY ;
Zhao, YL ;
Jia, GA ;
Wang, TC ;
Yuan, H ;
Ye, C ;
Zhao, F ;
Chai, ZF ;
Zhu, CF ;
Fang, XH ;
Ma, BC ;
Wan, LJ .
TOXICOLOGY LETTERS, 2006, 163 (02) :109-120
[4]   Effects of nanophase materials (≤20 nm) on biological responses [J].
Cheng, MD .
JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2004, 39 (10) :2691-2705
[5]   Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles [J].
Cioffi, N ;
Ditaranto, N ;
Torsi, L ;
Picca, RA ;
Sabbatini, L ;
Valentini, A ;
Novello, L ;
Tantillo, G ;
Bleve-Zacheo, T ;
Zambonin, PG .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2005, 381 (03) :607-616
[6]   In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells [J].
Davoren, Maria ;
Herzog, Eva ;
Casey, Alan ;
Cottineau, Benjamin ;
Chambers, Gordon ;
Byrne, Hugh J. ;
Lyng, Fiona M. .
TOXICOLOGY IN VITRO, 2007, 21 (03) :438-448
[7]   Ambient particle inhalation and the cardiovascular system: Potential mechanisms [J].
Donaldson, K ;
Stone, V ;
Seaton, A ;
MacNee, W .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2001, 109 :523-527
[8]   Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):: The importance of particle solubility [J].
Franklin, Natasha M. ;
Rogers, Nicola J. ;
Apte, Simon C. ;
Batley, Graeme E. ;
Gadd, Gerald E. ;
Casey, Philip S. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (24) :8484-8490
[9]  
Gabbay J, 2006, J IND TEXT, V35, P323, DOI DOI 10.1177/1528083706060785
[10]   Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition [J].
Gojova, Andrea ;
Guo, Bing ;
Kota, Rama S. ;
Rutledge, John C. ;
Kennedy, Ian M. ;
Barakat, Abdul I. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2007, 115 (03) :403-409