Predictions of the pathological response to neoadjuvant chemotherapy in patients with primary breast cancer using a data mining technique

被引:18
作者
Takada, M. [1 ,2 ]
Sugimoto, M. [3 ,4 ]
Ohno, S. [5 ]
Kuroi, K. [6 ]
Sato, N. [7 ]
Bando, H. [8 ]
Masuda, N. [9 ]
Iwata, H. [10 ]
Kondo, M. [11 ]
Sasano, H. [12 ,13 ]
Chow, L. W. C. [14 ]
Inamoto, T. [15 ]
Naito, Y. [4 ,16 ,17 ]
Tomita, M. [4 ,16 ,17 ]
Toi, M. [1 ]
机构
[1] Kyoto Univ, Dept Breast Surg, Grad Sch Med, Sakyo Ku, Kyoto 6068507, Japan
[2] Japan Soc Promot Sci, Tokyo, Japan
[3] Kyoto Univ, Med Innovat Ctr, Grad Sch Med, Kyoto 6068507, Japan
[4] Keio Univ, Inst Adv Biosci, Tsuruoka, Yamagata, Japan
[5] Kyushu Natl Canc Ctr, Dept Breast Oncol, Fukuoka, Japan
[6] Tokyo Metropolitan Komagome Hosp, Dept Surg, Tokyo Metropolitan Canc & Infect Dis Ctr, Tokyo, Japan
[7] Niigata Canc Ctr Hosp, Dept Surg, Niigata, Japan
[8] Univ Tsukuba, Dept Breast & Endocrine Surg, Fac Med, Tsukuba, Ibaraki, Japan
[9] Osaka Natl Hosp, Dept Surg, Osaka, Japan
[10] Aichi Canc Ctr, Dept Breast Oncol, Nagoya, Aichi 464, Japan
[11] Univ Tsukuba, Dept Hlth Care Policy & Management, Grad Sch Comprehens Human Sci, Tsukuba, Ibaraki, Japan
[12] Tohoku Univ Hosp, Dept Pathol, Sendai, Miyagi, Japan
[13] Tohoku Univ, Sch Med, Sendai, Miyagi 980, Japan
[14] UNIMED Med Inst, Comprehens Ctr Breast Dis, Hong Kong, Hong Kong, Peoples R China
[15] Tenri Hosp, Dept Breast Surg, Tenri, Nara 632, Japan
[16] Keio Univ, Fac Environm & Informat Studies, Fujisawa, Kanagawa, Japan
[17] Keio Univ, Grad Sch Media & Governance, Fujisawa, Kanagawa, Japan
关键词
Breast cancer; Data mining; Neoadjuvant chemotherapy; Nomogram; Prediction model; PREOPERATIVE CHEMOTHERAPY; CYCLOPHOSPHAMIDE; DOXORUBICIN; EXPRESSION; NOMOGRAMS; THERAPY;
D O I
10.1007/s10549-012-2109-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Nomogram, a standard technique that utilizes multiple characteristics to predict efficacy of treatment and likelihood of a specific status of an individual patient, has been used for prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. The aim of this study was to develop a novel computational technique to predict the pathological complete response (pCR) to NAC in primary breast cancer patients. A mathematical model using alternating decision trees, an epigone of decision tree, was developed using 28 clinicopathological variables that were retrospectively collected from patients treated with NAC (n = 150), and validated using an independent dataset from a randomized controlled trial (n = 173). The model selected 15 variables to predict the pCR with yielding area under the receiver operating characteristics curve (AUC) values of 0.766 [95 % confidence interval (CI)], 0.671-0.861, P value < 0.0001) in cross-validation using training dataset and 0.787 (95 % CI 0.716-0.858, P value < 0.0001) in the validation dataset. Among three subtypes of breast cancer, the luminal subgroup showed the best discrimination (AUC = 0.779, 95 % CI 0.641-0.917, P value = 0.0059). The developed model (AUC = 0.805, 95 % CI 0.716-0.894, P value < 0.0001) outperformed multivariate logistic regression (AUC = 0.754, 95 % CI 0.651-0.858, P value = 0.00019) of validation datasets without missing values (n = 127). Several analyses, e.g. bootstrap analysis, revealed that the developed model was insensitive to missing values and also tolerant to distribution bias among the datasets. Our model based on clinicopathological variables showed high predictive ability for pCR. This model might improve the prediction of the response to NAC in primary breast cancer patients.
引用
收藏
页码:661 / 670
页数:10
相关论文
共 27 条
[1]   Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial [J].
Albain, Kathy S. ;
Barlow, William E. ;
Shak, Steven ;
Hortobagyi, Gabriel N. ;
Livingston, Robert B. ;
Yeh, I-Tien ;
Ravdin, Peter ;
Bugarini, Roberto ;
Boehner, Frederick L. ;
Davidson, Nancy E. ;
Sledge, George W. ;
Winer, Eric P. ;
Hudis, Clifford ;
Ingle, James N. ;
Perez, Edith A. ;
Pritchard, Kathleen I. ;
Shepherd, Lois ;
Gralow, Julie R. ;
Yoshizawa, Carl ;
Allred, D. Craig ;
Osborne, C. Kent ;
Hayes, Daniel F. .
LANCET ONCOLOGY, 2010, 11 (01) :55-65
[2]   Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27 [J].
Bear, HD ;
Anderson, S ;
Smith, RE ;
Geyer, CE ;
Mamounas, EP ;
Fisher, B ;
Brown, AM ;
Robidoux, A ;
Margolese, R ;
Kahlenberg, MS ;
Paik, S ;
Soran, A ;
Wickerham, DL ;
Wolmark, N .
JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (13) :2019-2027
[3]   Biologic markers as predictors of clinical outcome from systemic therapy for primary operable breast cancer [J].
Chang, J ;
Powles, TJ ;
Allred, DC ;
Ashey, SE ;
Clark, GM ;
Makris, A ;
Assersohn, L ;
Gregory, RK ;
Osborne, CK ;
Dowsett, M .
JOURNAL OF CLINICAL ONCOLOGY, 1999, 17 (10) :3058-3063
[4]   Classification of genomic islands using decision trees and their ensemble algorithms [J].
Che, Dongsheng ;
Hockenbury, Cory ;
Marmelstein, Robert ;
Rasheed, Khaled .
BMC GENOMICS, 2010, 11
[5]   Expression of ER, PgR, HER1, HER2, and response: a study of preoperative chemotherapy [J].
Colleoni, M. ;
Viale, G. ;
Zahrieh, D. ;
Bottiglieri, L. ;
Gelber, R. D. ;
Veronesi, P. ;
Balduzzi, A. ;
Torrisi, R. ;
Luini, A. ;
Intra, M. ;
Dellapasqua, S. ;
Cardillo, A. ;
Ghisini, R. ;
Peruzzotti, G. ;
Goldhirsch, A. .
ANNALS OF ONCOLOGY, 2008, 19 (03) :465-472
[6]   A nomogram based on the expression of Ki-67, steroid hormone receptors status and number of chemotherapy courses to predict pathological complete remission after preoperative chemotherapy for breast cancer [J].
Colleoni, Marco ;
Bagnardi, Vincenzo ;
Rotmensz, Nicole ;
Viale, Giuseppe ;
Mastropasqua, Mauro ;
Veronesi, Paolo ;
Cardillo, Anna ;
Torrisi, Rosalba ;
Luini, Alberto ;
Goldhirsch, Aron .
EUROPEAN JOURNAL OF CANCER, 2010, 46 (12) :2216-2224
[7]   Lessons on responsiveness to adjuvant systemic therapies learned from the neoadjuvant setting [J].
Colleoni, Marco ;
Viale, Giuseppe ;
Goldhirsch, Aron .
BREAST, 2009, 18 :S137-S140
[8]   Identification of biology-based breast cancer types with distinct predictive and prognostic features: role of steroid hormone and HER2 receptor expression in patients treated with neoadjuvant anthracycline/taxane-based chemotherapy [J].
Darb-Esfahani, Silvia ;
Loibl, Sibylle ;
Mueller, Berit M. ;
Roller, Marc ;
Denkert, Carsten ;
Komor, Martina ;
Schluens, Karsten ;
Blohmer, Jens Uwe ;
Budczies, Jan ;
Gerber, Bernd ;
Noske, Aurelia ;
du Bois, Andreas ;
Weichert, Wilko ;
Jackisch, Christian ;
Dietel, Manfred ;
Richter, Klaus ;
Kaufmann, Manfred ;
von Minckwitz, Gunter .
BREAST CANCER RESEARCH, 2009, 11 (05)
[9]   Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures [J].
Fan, Cheng ;
Prat, Aleix ;
Parker, Joel S. ;
Liu, Yufeng ;
Carey, Lisa A. ;
Troester, Melissa A. ;
Perou, Charles M. .
BMC MEDICAL GENOMICS, 2011, 4
[10]   Effect of preoperative chemotherapy on the outcome of women with operable breast cancer [J].
Fisher, B ;
Bryant, J ;
Wolmark, N ;
Mamounas, E ;
Brown, A ;
Fisher, ER ;
Wickerham, DL ;
Begovic, M ;
DeCillis, A ;
Robidoux, A ;
Margolese, RG ;
Cruz, AB ;
Hoehn, JL ;
Lees, AW ;
Dimitrov, NV ;
Bear, HD .
JOURNAL OF CLINICAL ONCOLOGY, 1998, 16 (08) :2672-2685