On the convergence of successive linear-quadratic programming algorithms

被引:36
作者
Byrd, RH [1 ]
Gould, NIM
Nocedal, J
Waltz, RA
机构
[1] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
[2] Rutherford Appleton Lab, Computat Sci & Engn Dept, Chilton, England
[3] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
基金
英国工程与自然科学研究理事会;
关键词
sequential linear programming; global convergence theory; nonlinear optimization; penalty parameter updates;
D O I
10.1137/S1052623403426532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global convergence properties of a class of penalty methods for nonlinear programming are analyzed. These methods include successive linear programming approaches and, more speciffically, the successive linear-quadratic programming approach presented by Byrd et al. [Math. Program., 100 (2004), pp. 27-48]. Every iteration requires the solution of two trust-region subproblems involving piecewise linear and quadratic models, respectively. It is shown that, for a fixed penalty parameter, the sequence of iterates approaches stationarity of the penalty function. A procedure for dynamically adjusting the penalty parameter is described, and global convergence results for it are established.
引用
收藏
页码:471 / 489
页数:19
相关论文
共 16 条
[1]   An algorithm for nonlinear optimization using linear programming and equality constrained subproblems [J].
Byrd, RH ;
Gould, NIM ;
Nocedal, J ;
Waltz, RA .
MATHEMATICAL PROGRAMMING, 2004, 100 (01) :27-48
[2]   On the global convergence of an SLP-filter algorithm that takes EQP steps [J].
Chin, CM ;
Fletcher, R .
MATHEMATICAL PROGRAMMING, 2003, 96 (01) :161-177
[3]  
CHIN CM, 2001, THESIS U DUNDEE SCOT
[4]   PENALTY FUNCTION METHOD CONVERGING DIRECTLY TO A CONSTRAINED OPTIMUM [J].
CONN, AR ;
PIETRZYKOWSKI, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (02) :348-375
[5]  
CONN AR, 2000, MPSSIAM SER OPTIM, V1
[6]  
DELAMAZA ES, 1987, THESIS U DUNDEE SCOT
[7]   NONLINEAR-PROGRAMMING AND NONSMOOTH OPTIMIZATION BY SUCCESSIVE LINEAR-PROGRAMMING [J].
FLETCHER, R ;
DELAMAZA, ES .
MATHEMATICAL PROGRAMMING, 1989, 43 (03) :235-256
[8]   Nonlinear programming without a penalty function [J].
Fletcher, R ;
Leyffer, S .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :239-269
[9]  
FLETCHER R, 1981, PRACTICAL METHODS OP, V2, pCH14
[10]  
GATE RW, 2004, THESIS U DUNDEE