Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets

被引:93
作者
Dhivya, L. [1 ]
Janani, N. [1 ]
Palanivel, B. [2 ]
Murugan, Ramaswamy [1 ]
机构
[1] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
[2] Pondicherry Engn Coll, Dept Phys, Pondicherry 605014, India
来源
AIP ADVANCES | 2013年 / 3卷 / 08期
关键词
HIGH IONIC-CONDUCTIVITY; SOLID ELECTROLYTES; AC CONDUCTIVITY; GLASSES; RELAXATION; DEPENDENCE; CERAMICS; SPECTRA; BATTERY; OXIDES;
D O I
10.1063/1.4818971
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium garnet Li7La3Zr2O12 (LLZ) sintered at 1230 degrees C has received considerable importance in recent times as result of its high total (bulk + grain boundary) ionic conductivity of 5 x 10(-4) S cm(-1) at room temperature. In this work we report Li+ transport process of Li(7-2x)La(3)Zr(2-x)WxO(12) (x = 0.3, 0.5) cubic lithium garnets. Among the investigated compounds, Li6.4La3Zr1.7W0.3O12 sintered relatively at lower temperature 1100 degrees C exhibits highest room temperature (30 degrees C) total (bulk + grain boundary) ionic conductivity of 7.89 x 10(-4) S cm(-1). The temperature dependencies of the bulk conductivity and relaxation frequency in the bulk are governed by the same activation energy. Scaling the conductivity spectra for both Li6.4La3Zr1.7W0.3O12 and Li6La3Zr1.5W0.5O12 sample at different temperatures merges on a single curve, which implies that the relaxation dynamics of charge carriers is independent of temperature. The shape of the imaginary part of the modulus spectra suggests that the relaxation processes are non-Debye in nature. The present studies supports the prediction of optimum Li+ concentration required for the highest room temperature Li+ conductivity in LixLa(3)M(2)O(12) is around x = 6.4 +/- 0.1. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:21
相关论文
共 40 条
[1]   Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 [J].
Allen, J. L. ;
Wolfenstine, J. ;
Rangasamy, E. ;
Sakamoto, J. .
JOURNAL OF POWER SOURCES, 2012, 206 :315-319
[2]   MOBILE ION CONCENTRATIONS IN SOLID ELECTROLYTES FROM AN ANALYSIS OF AC CONDUCTIVITY [J].
ALMOND, DP ;
WEST, AR .
SOLID STATE IONICS, 1983, 9-10 (DEC) :277-282
[3]   Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure [J].
Awaka, Junji ;
Kijima, Norihito ;
Hayakawa, Hiroshi ;
Akimoto, Junji .
JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (08) :2046-2052
[4]   Electrical properties of Li2BiV5O15 ceramics [J].
Das, P. S. ;
Chakraborty, P. K. ;
Behera, Banarji ;
Choudhary, R. N. P. .
PHYSICA B-CONDENSED MATTER, 2007, 395 (1-2) :98-103
[5]   Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry [J].
Duevel, Andre ;
Kuhn, Alexander ;
Robben, Lars ;
Wilkening, Martin ;
Heitjans, Paul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (29) :15192-15202
[6]   Universality of ac conduction in disordered solids [J].
Dyre, JC ;
Schroder, TB .
REVIEWS OF MODERN PHYSICS, 2000, 72 (03) :873-892
[7]   Crystal Chemistry and Stability of "Li7La3Zr2O12" Garnet: A Fast Lithium-Ion Conductor [J].
Geiger, Charles A. ;
Alekseev, Evgeny ;
Lazic, Biljana ;
Fisch, Martin ;
Armbruster, Thomas ;
Langner, Ramona ;
Fechtelkord, Michael ;
Kim, Namjun ;
Pettke, Thomas ;
Weppner, Werner .
INORGANIC CHEMISTRY, 2011, 50 (03) :1089-1097
[8]   Scaling of the conductivity spectra in ionic glasses: Dependence on the structure [J].
Ghosh, A ;
Pan, A .
PHYSICAL REVIEW LETTERS, 2000, 84 (10) :2188-2190
[9]   ELECTRICAL RELAXATION IN A GLASS-FORMING MOLTEN-SALT [J].
HOWELL, FS ;
BOSE, RA ;
MACEDO, PB ;
MOYNIHAN, CT .
JOURNAL OF PHYSICAL CHEMISTRY, 1974, 78 (06) :639-648
[10]   Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12 [J].
Huang, Mian ;
Dumon, Alexandre ;
Nan, Ce-Wen .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 21 :62-64