A theorem on the absence of phase transitions in one-dimensional growth models with on-site periodic potentials

被引:10
作者
Cuesta, JA [1 ]
Sánchez, A [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, GISC, Leganes 28911, Madrid, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 10期
关键词
D O I
10.1088/0305-4470/35/10/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We rigorously prove that a wide class of one-dimensional growth models with on-site periodic potential, such as the discrete sine-Gordon model, have no phase transition at any temperature T > 0. The proof relies on the spectral analysis of the transfer operator associated with the models. We show that this operator is Hilbert-Schmidt and that its maximum eigenvalue is an analytical function of temperature.
引用
收藏
页码:2373 / 2377
页数:5
相关论文
共 21 条
[1]   DYNAMICS OF ROUGHENING TRANSITION [J].
CHUI, ST ;
WEEKS, JD .
PHYSICAL REVIEW LETTERS, 1978, 40 (12) :733-736
[2]  
CUESTA JA, 2001, UNPUB
[3]   THERMODYNAMICS OF SINE-GORDON FIELD [J].
CURRIE, JF ;
FOGEL, MB ;
PALMER, FL .
PHYSICAL REVIEW A, 1977, 16 (02) :796-798
[4]   ENTROPY-DRIVEN TRANSITION IN A ONE-DIMENSIONAL SYSTEM [J].
DAUXOIS, T ;
PEYRARD, M .
PHYSICAL REVIEW E, 1995, 51 (05) :4027-4040
[5]   Thermodynamic instabilities in one dimension: Correlations, scaling and solitons [J].
Dauxois, T ;
Theodorakopoulos, N ;
Peyrard, M .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :869-891
[6]  
DEBRUIJN NG, 1981, ASYMPTOTIC METHODS A, pCH4
[7]   INVESTIGATION OF A CLASS OF ONE-DIMENSIONAL NONLINEAR FIELDS [J].
GUPTA, N ;
SUTHERLAND, B .
PHYSICAL REVIEW A, 1976, 14 (05) :1790-1801
[8]   SINE-GORDON CHAIN - EQUILIBRIUM STATISTICAL-MECHANICS [J].
GUYER, RA ;
MILLER, MD .
PHYSICAL REVIEW A, 1978, 17 (03) :1205-1217
[9]  
HORN RA, 1985, MATRIX ANAL, P500
[10]  
KATO T, 1995, PERTURBATION THEORY, P368