Src kinase activation: A switched electrostatic network

被引:68
作者
Ozkirimli, E
Post, CB [1 ]
机构
[1] Purdue Univ, Markey Ctr Struct Biol, Med Chem & Mol Pharmacol Dept, W Lafayette, IN 47907 USA
[2] Purdue Univ, Purdue Canc Ctr, W Lafayette, IN 47907 USA
关键词
enzyme activation; protein electrostatics; activated molecular dynamics; allosterism; phosphoproteins;
D O I
10.1110/ps.051999206
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Src tyrosine kinases are essential in numerous cell signaling pathways, and improper functioning of these enzymes has been implicated in many diseases. The activity of Src kinases is regulated by conformational activation, which involves several structural changes within the catalytic domain (CD): the orientation of two lobes of CD; rearrangement of the activation loop (A-loop); and movement of an alpha-helix (alpha C), which is located at the interface between the two lobes, into or away from the catalytic cleft. Conformational activation was investigated using biased molecular dynamics to explore the transition pathway between the active and the down-regulated conformation of CD for the Src-kinase family member Lyn kinase, and to gain insight into the interdependence of these changes. Lobe opening is observed to be a facile motion, whereas movement of the A-loop motion is more complex requiring secondary structure changes as well as communication with alpha C. A key result is that the conformational transition involves a switch in an electrostatic network of six polar residues between the active and the down-regulated conformations. The exchange between interactions links the three main motions of the CD. Kinetic experiments that would demonstrate the contribution of the switched electrostatic network to the enzyme mechanism are proposed. Possible implications for regulation conferred by interdomain interactions are also discussed.
引用
收藏
页码:1051 / 1062
页数:12
相关论文
共 71 条
[1]   Activation loop phosphorylation and catalysis in protein kinases: Is there functional evidence for the autoinhibitor model? [J].
Adams, JA .
BIOCHEMISTRY, 2003, 42 (03) :601-607
[2]   The N-terminal end of the catalytic domain of Src kinase Hck is a conformational switch implicated in long-range allosteric regulation [J].
Banavali, NK ;
Roux, B .
STRUCTURE, 2005, 13 (11) :1715-1723
[3]   CHARACTERIZATION OF PP60(C-SRC) TYROSINE KINASE-ACTIVITIES USING A CONTINUOUS ASSAY - AUTOACTIVATION OF THE ENZYME IS AN INTERMOLECULAR AUTOPHOSPHORYLATION PROCESS [J].
BARKER, SC ;
KASSEL, DB ;
WEIGL, D ;
HUANG, XY ;
LUTHER, MA ;
KNIGHT, WB .
BIOCHEMISTRY, 1995, 34 (45) :14843-14851
[4]   Structure and regulation of Src family kinases [J].
Boggon, TJ ;
Eck, MJ .
ONCOGENE, 2004, 23 (48) :7918-7927
[5]   Leukocyte protein tyrosine kinases: Potential targets for drug discovery [J].
Bolen, JB ;
Brugge, JS .
ANNUAL REVIEW OF IMMUNOLOGY, 1997, 15 :371-404
[6]   Crystal structures of active Src kinase domain complexes [J].
Breitenlechner, CB ;
Kairies, NA ;
Honold, K ;
Scheiblich, S ;
Koll, H ;
Greiter, E ;
Koch, S ;
Schäfer, W ;
Huber, R ;
Engh, RA .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 353 (02) :222-231
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]   Mechanical unfolding of a β-hairpin using molecular dynamics [J].
Bryant, Z ;
Pande, VS ;
Rokhsar, DS .
BIOPHYSICAL JOURNAL, 2000, 78 (02) :584-589
[9]   ANTIIMMUNOGLOBULIN STIMULATION OF LYMPHOCYTES-B ACTIVATES SRC-RELATED PROTEIN-TYROSINE KINASES [J].
BURKHARDT, AL ;
BRUNSWICK, M ;
BOLEN, JB ;
MOND, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (16) :7410-7414
[10]   Glivec (ST1571, Imatinib), a rationally developed, targeted anticancer drug [J].
Capdeville, R ;
Buchdunger, E ;
Zimmermann, J ;
Matter, A .
NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (07) :493-502