Generalized nonextensive thermodynamics applied to the cosmic background radiation in a Robertson-Walker universe

被引:134
作者
Hamity, VH
Barraco, DE
机构
[1] Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba
关键词
D O I
10.1103/PhysRevLett.76.4664
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Statistical mechanics is useful to introduce generalizations of standard thermodynamics through the generalization of the entropy and other state functions. Along these lines the Tsallis nonextensive and the Bergmann group symmetric generalizations have proven to be very useful. We combine both formalisms to describe the nonextensive thermostatistics in a relativistic setting. We obtain the generalized forms of the first and second laws of thermodynamics for reversible processes, and apply the resulting theory to the cosmic blackbody radiation in a Robertson-Walker model of the Universe. We show that the temperature of the cosmic blackbody radiation varies as the inverse of the scale factor of the Universe, and is independent of the degree of nonextensivity.
引用
收藏
页码:4664 / 4666
页数:3
相关论文
共 16 条
[1]   GENERALIZED STATISTICAL MECHANICS [J].
BERGMANN, PG .
PHYSICAL REVIEW, 1951, 84 (05) :1026-1033
[2]   Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics [J].
Boghosian, BM .
PHYSICAL REVIEW E, 1996, 53 (05) :4754-4763
[3]   GENERALIZED STATISTICAL-MECHANICS - CONNECTION WITH THERMODYNAMICS [J].
CURADO, EMF ;
TSALLIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02) :L69-L72
[4]  
CURADO EMF, 1992, J PHYS A-MATH GEN, V25, P1019, DOI 10.1088/0305-4470/25/4/038
[5]   RELATIVISTIC THERMODYNAMICS [J].
HAMITY, VH .
PHYSICAL REVIEW, 1969, 187 (05) :1745-&
[6]  
HAMITY VH, 1970, NATURE, V226, P497
[7]   Generalized statistics and solar neutrinos [J].
Kaniadakis, G ;
Lavagno, A ;
Quarati, P .
PHYSICS LETTERS B, 1996, 369 (3-4) :308-312
[8]   A QUANTITATIVE TEST OF GIBBS STATISTICAL-MECHANICS [J].
PLASTINO, AR ;
PLASTINO, A ;
VUCETICH, H .
PHYSICS LETTERS A, 1995, 207 (1-2) :42-46
[9]  
STARIOLO DA, 1995, ANN REV COMPUTATIONA, V2, P343
[10]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487