Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site

被引:64
作者
Mahalingam, B
Wang, YF
Boross, PI
Tozser, J
Louis, JM
Harrison, RW
Weber, IT
机构
[1] Georgia State Univ, Dept Biol, Atlanta, GA 30302 USA
[2] Univ Debrecen, Dept Biochem & Mol Biol, Debrecen, Hungary
[3] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
[4] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[5] Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2004年 / 271卷 / 08期
关键词
aspartic protease; crystal structure; drug resistance; HIV-1;
D O I
10.1111/j.1432-1033.2004.04060.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structures of the wild-type HIV-1 protease (PR) and the two resistant variants, PRV82A and PRL90M, have been determined in complex with the antiviral drug, indinavir, to gain insight into the molecular basis of drug resistance. V82A and L90M correspond to an active site mutation and nonactive site mutation, respectively. The inhibition (K-i) of PRV82A and PRL90M was 3.3- and 0.16-fold, respectively, relative to the value for PR. They showed only a modest decrease, of 10-15%, in their k(cat)/K-m values relative to PR. The crystal structures were refined to resolutions of 1.25-1.4 Angstrom to reveal critical features associated with inhibitor resistance. PRV82A showed local changes in residues 81-82 at the site of the mutation, while PRL90M showed local changes near Met90 and an additional interaction with indinavir. These structural differences concur with the kinetic data.
引用
收藏
页码:1516 / 1524
页数:9
相关论文
共 31 条
[1]   Associations between amino acids in the evolution of HIV type 1 protease sequences under indinavir therapy [J].
Brown, AJL ;
Korber, BT ;
Condra, JH .
AIDS RESEARCH AND HUMAN RETROVIRUSES, 1999, 15 (03) :247-253
[2]  
CHEN Z, 1995, J BIOL CHEM, V270, P433
[3]  
CHEN ZG, 1994, J BIOL CHEM, V269, P26344
[4]   Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor [J].
Condra, JH ;
Holder, DJ ;
Schleif, WA ;
Blahy, OM ;
Danovich, RM ;
Gabryelski, LJ ;
Graham, DJ ;
Laird, D ;
Quintero, JC ;
Rhodes, A ;
Robbins, HL ;
Roth, E ;
Shivaprakash, M ;
Yang, T ;
Chodakewitz, JA ;
Deutsch, PJ ;
Leavitt, RY ;
Massari, FE ;
Mellors, JW ;
Squires, KE ;
Steigbigel, RT ;
Teppler, H ;
Emini, EA .
JOURNAL OF VIROLOGY, 1996, 70 (12) :8270-8276
[5]   Kinetic properties of saquinavir-resistant mutants of human immunodeficiency virus type 1 protease and their implications in drug resistance in vivo [J].
Ermolieff, J ;
Lin, XL ;
Tang, J .
BIOCHEMISTRY, 1997, 36 (40) :12364-12370
[6]   Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites [J].
Fehér, A ;
Weber, IT ;
Bagossi, P ;
Boross, P ;
Mahalingam, B ;
Louis, JM ;
Copeland, TD ;
Torshin, IY ;
Harrison, RW ;
Tözsér, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (16) :4114-4120
[7]   DIFFERENT BEST RIGID-BODY MOLECULAR FIT ROUTINE [J].
FERRO, DR ;
HERMANS, J .
ACTA CRYSTALLOGRAPHICA SECTION A, 1977, 33 (MAR1) :345-347
[8]   KINETIC CHARACTERIZATION AND CROSS-RESISTANCE PATTERNS OF HIV-1 PROTEASE MUTANTS SELECTED UNDER DRUG PRESSURE [J].
GULNIK, SV ;
SUVOROV, LI ;
LIU, BS ;
YU, B ;
ANDERSON, B ;
MITSUYA, H ;
ERICKSON, JW .
BIOCHEMISTRY, 1995, 34 (29) :9282-9287
[9]   Phenotypic and genotypic analysis of clinical HIV-1 isolates reveals extensive protease inhibitor cross-resistance: a survey of over 6000 samples [J].
Hertogs, K ;
Bloor, S ;
Kemp, SD ;
Van den Eynde, C ;
Alcorn, TM ;
Pauwels, R ;
Van Houtte, M ;
Staszewski, S ;
Miller, V ;
Larder, BA .
AIDS, 2000, 14 (09) :1203-1210
[10]   Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: Insights into the mechanisms of drug resistance [J].
Hong, L ;
Zhang, XJC ;
Hartsuck, JA ;
Tang, J .
PROTEIN SCIENCE, 2000, 9 (10) :1898-1904