CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis

被引:452
作者
Okamoto, M
Kuwahara, A
Seo, M
Kushiro, T
Asami, T
Hirai, N
Kamiya, Y
Koshiba, T
Nambara, E [1 ]
机构
[1] RIKEN, Plant Sci Ctr, Yokohama, Kanagawa 2300045, Japan
[2] Tokyo Metropolitan Univ, Dept Biol Sci, Hachioji, Tokyo 1920397, Japan
[3] RIKEN, Discovery Res Inst, Wako, Saitama 3510198, Japan
[4] Kyoto Univ, Int Innovat Ctr, Kyoto 6068501, Japan
关键词
D O I
10.1104/pp.106.079475
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Endogenous abscisic acid (ABA) levels are regulated by both biosynthesis and catabolism of the hormone. ABA 8'-hydroxylase is considered to be the key catabolic enzyme in many physiological processes. We have previously identified that four members of the Arabidopsis ( Arabidopsis thaliana) CYP707A gene family (CYP707A1 to CYP707A4) encode ABA 8'-hydroxylases, and that the cyp707a2 mutants showed an increase in ABA levels in dry and imbibed seeds. In this study, we showed that the cyp707a1 mutant accumulated ABA to higher levels in dry seeds than the cyp707a2 mutant. Expression analysis showed that the CYP707A1 was expressed predominantly during mid-maturation and was down-regulated during late-maturation. Concomitantly, the CYP707A2 transcript levels increased from late-maturation to mature dry seed. Phenotypic analysis of single and double cyp707a mutants indicates that the CYP707A1 is important for reducing ABA levels during mid-maturation. On the other hand, CYP707A2 is responsible for the regulation of ABA levels from late-maturation to germination. Moreover, CYP707A1 and CYP707A3 were also shown to be involved in postgermination growth. Spatial expression analysis suggests that CYP707A1 was expressed predominantly in embryo during mid-maturation, whereas CYP707A2 expression was detected in both embryo and endosperm from late-maturation to germination. Our results demonstrate that each CYP707A gene plays a distinct role during seed development and postgermination growth.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 48 条
[1]   Cloning and characterization of an L1 layer-specific gene in Arabidopsis thaliana [J].
Abe, M ;
Takahashi, T ;
Komeda, Y .
PLANT AND CELL PHYSIOLOGY, 1999, 40 (06) :571-580
[2]   Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds:: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana [J].
Ali-Rachedi, S ;
Bouinot, D ;
Wagner, MH ;
Bonnet, M ;
Sotta, B ;
Grappin, P ;
Jullien, M .
PLANTA, 2004, 219 (03) :479-488
[3]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[4]  
ASAMI T, 1999, J CHEM RES SYNOP, V11, P658
[5]   Seed germination and dormancy [J].
Bewley, JD .
PLANT CELL, 1997, 9 (07) :1055-1066
[6]   Release of dormancy in sunflower embryos by dry storage: involvement of gibberellins and abscisic acid [J].
Bianco, J. ;
Garello, G. ;
Le Page-Degivry, M. T. .
SEED SCIENCE RESEARCH, 1994, 4 (02) :57-62
[7]   A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions [J].
Cheng, WH ;
Endo, A ;
Zhou, L ;
Penney, J ;
Chen, HC ;
Arroyo, A ;
Leon, P ;
Nambara, E ;
Asami, T ;
Seo, M ;
Koshiba, T ;
Sheen, J .
PLANT CELL, 2002, 14 (11) :2723-2743
[8]   The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination [J].
Chiwocha, SDS ;
Cutler, AJ ;
Abrams, SR ;
Ambrose, SJ ;
Yang, J ;
Ross, ARS ;
Kermode, AR .
PLANT JOURNAL, 2005, 42 (01) :35-48
[9]   Breakage of Pseudotsuga menziesii seed dormancy by cold treatment as related to changes in seed ABA sensitivity and ABA levels [J].
Corbineau, F ;
Bianco, J ;
Garello, G ;
Côme, D .
PHYSIOLOGIA PLANTARUM, 2002, 114 (02) :313-319
[10]   A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis [J].
Cutler, S ;
Ghassemian, M ;
Bonetta, D ;
Cooney, S ;
McCourt, P .
SCIENCE, 1996, 273 (5279) :1239-1241