MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: Efficiency of the processes and bromate formation

被引:140
作者
Acero, JL [1 ]
Haderlein, SB [1 ]
Schmidt, TC [1 ]
Suter, MJF [1 ]
Von Gunten, U [1 ]
机构
[1] Swiss Fed Inst Environm Sci & Technol EAWAG, CH-8600 Dubendorf, Switzerland
关键词
D O I
10.1021/es010044n
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The present study investigates the oxidation of methyl tert-butyl ether (MTBE) by conventional ozonation and the advanced oxidation process (AOP) ozone/hydrogen peroxide under drinking water treatment conditions. The major degradation products identified were tert-butyl formate (TBF), tert-butyl alcohol (TBA), 2-methoxy-2-methyl propionaldehyde (MMP), acetone (AC), methyl acetate (MA), hydroxyisobutyraldehyde (HiBA), and formaldehyde (FA). The rate constants of the reaction of ozone and OH radicals with MTBE were found to be 0.14 and 1.9 x 10(9) M-1 s(-1), respectively. The rate constants for the same oxidation processes were also measured fort he degradation products TBF, MMP, MA, and HiBA (k(O3-TBF) = 0.78 M-1 S-1; k(OH-TBF) = 7.0 x 10(8) M-1 s(-1); k(O3-MMP) = 5 M-1 s(-1); k(OH-MMP) = 3 x 10(9) M-1 s(-1), k(O3-MA) = 0.09 M-1 s(-1), k(O3- HiBA) = 5 M-1 s(-1); k(OH-HiBA) = 3 x 10(9) M-1 s(-1)). Since all compounds reacted slowly with molecular ozone only the degradation pathway of MTBE with OH radicals as been determined, including the formation of primary degradation products. In experiments performed with several natural waters, the efficiency of MTBE elimination and the formation of bromate as disinfection byproduct have been measured. With a bromide level of 50 mug/L, only 35-50% of MTBE could be eliminated by the AOP O-3/ H2O2 without exceeding the current drinking water standard of bromate (10 mug/L). The transient concentrations of MTBE and its primary degradation products were modeled using a combination of kinetic parameters (degradation product distribution and rate constants) together with the ozone and OH radical concentration and were in good agreement with the experimental results.
引用
收藏
页码:4252 / 4259
页数:8
相关论文
共 36 条
[1]   Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: A predictive tool for drinking water treatment [J].
Acero, JL ;
Stemmler, K ;
Von Gunten, U .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (04) :591-597
[2]  
[Anonymous], 2000, NWRI9906
[3]   PHOTOMETRIC-METHOD FOR THE DETERMINATION OF LOW CONCENTRATIONS OF HYDROGEN-PEROXIDE BY THE PEROXIDASE CATALYZED OXIDATION OF N,N-DIETHYL-P-PHENYLENEDIAMINE (DPD) [J].
BADER, H ;
STURZENEGGER, V ;
HOIGNE, J .
WATER RESEARCH, 1988, 22 (09) :1109-1115
[4]   DETERMINATION OF OZONE IN WATER BY THE INDIGO METHOD [J].
BADER, H ;
HOIGNE, J .
WATER RESEARCH, 1981, 15 (04) :449-456
[5]   PHOTOCATALYTIC DEGRADATION OF METHYL-TERT-BUTYL ETHER IN TIO2 SLURRIES - A PROPOSED REACTION SCHEME [J].
BARRETO, RD ;
GRAY, KA ;
ANDERS, K .
WATER RESEARCH, 1995, 29 (05) :1243-1248
[6]   ACUCHEM - A COMPUTER-PROGRAM FOR MODELING COMPLEX CHEMICAL-REACTION SYSTEMS [J].
BRAUN, W ;
HERRON, JT ;
KAHANER, DK .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1988, 20 (01) :51-62
[7]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[8]   UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters [J].
Cater, SR ;
Stefan, MI ;
Bolton, JR ;
Safarzadeh-Amiri, A .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (04) :659-662
[9]   Kinetics of methyl tert-butyl ether degradation and by-product formation during UV/hydrogen peroxide water treatment [J].
Chang, PBL ;
Young, TM .
WATER RESEARCH, 2000, 34 (08) :2233-2240
[10]   Hydrolysis of tert-butyl formate:: Kinetics, products, and implications for the environmental impact of methyl tert-butyl ether [J].
Church, CD ;
Pankow, JF ;
Tratnyek, PG .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1999, 18 (12) :2789-2796