Hydrodynamic equations for mixed quantum states. I. General formulation

被引:63
作者
Burghardt, I
Cederbaum, LS
机构
[1] Ecole Normale Super, Dept Chim, UMR 8642, F-75231 Paris 05, France
[2] Heidelberg Univ, Inst Phys Chem, D-69120 Heidelberg, Germany
关键词
D O I
10.1063/1.1416493
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum-mechanical hydrodynamic equations are considered for mixed quantum states, and the corresponding equations for pure quantum states are derived as a particular case. A generalization of the "quantum potential" of Bohmian mechanics is formulated. In the mixed-state case, an infinite hierarchy of kinetic equations arises that may be truncated by introducing suitable approximations. The influence of dissipation on the kinetic equations is discussed. (C) 2001 American Institute of Physics.
引用
收藏
页码:10303 / 10311
页数:9
相关论文
共 66 条
[1]   BROWNIAN MOTION OF A QUANTUM OSCILLATOR [J].
AGARWAL, GS .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (02) :739-+
[2]  
Alicki R., 2007, Volume 717 of Lecture Notes in Physics, V717
[3]  
BELL JS, 1989, SPEAKABLE UNSPEAKABL
[4]   Integrating the quantum Hamilton-Jacobi equations by wavefront expansion and phase space analysis [J].
Bittner, ER ;
Wyatt, RE .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (20) :8888-8897
[5]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[6]   A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF HIDDEN VARIABLES .2. [J].
BOHM, D .
PHYSICAL REVIEW, 1952, 85 (02) :180-193
[7]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[8]   QUANTUM COLLISION-THEORY WITH PHASE-SPACE DISTRIBUTIONS [J].
CARRUTHERS, P ;
ZACHARIASEN, F .
REVIEWS OF MODERN PHYSICS, 1983, 55 (01) :245-285
[9]  
Chattah A. K., 2000, Condensed Matter Physics, V3, P51
[10]  
de Broglie L., 1956, Une Tentative D'interpretation Causale et Non-lineaire de la Mecanique Ondulatoire (La Theorie de la Double Solution)