Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA

被引:46
作者
Geiss, Brian J. [1 ]
Pierson, Theodore C. [4 ]
Diamond, Michael S. [1 ,2 ,3 ]
机构
[1] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63110 USA
[4] Univ Penn, Dept Microbiol, Philadelphia, PA 19104 USA
关键词
West Nile Virus; West Nile Virus Infection; RNAi Response; West Nile Virus Strain; Subgenomic Replicon;
D O I
10.1186/1743-422X-2-53
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: West Nile virus is an emerging human pathogen for which specific antiviral therapy has not been developed. Recent studies have suggested that RNA interference (RNAi) has therapeutic potential as a sequence specific inhibitor of viral infection. Here, we examine the ability of exogenous small interfering RNAs (siRNAs) to block the replication of West Nile virus in human cells. Results: WNV replication and infection was greatly reduced when siRNA were introduced by cytoplasmic-targeted transfection prior to but not after the establishment of viral replication. WNV appeared to evade rather than actively block the RNAi machinery, as sequence-specific reduction in protein expression of a heterologous transgene was still observed in WNV-infected cells. However, sequence-specific decreases in WNV RNA were observed in cells undergoing active viral replication when siRNA was transfected by an alternate method, electroporation. Conclusion: Our results suggest that actively replicating WNV RNA may not be exposed to the cytoplasmic RNAi machinery. Thus, conventional lipid-based siRNA delivery systems may not be adequate for therapy against enveloped RNA viruses that replicate in specialized membrane compartments.
引用
收藏
页数:13
相关论文
共 65 条
[1]   Use of RNA interference to prevent lethal murine West Nile virus infection [J].
Bai, FW ;
Wang, T ;
Pal, U ;
Bao, F ;
Gould, LH ;
Fikrig, E .
JOURNAL OF INFECTIOUS DISEASES, 2005, 191 (07) :1148-1154
[2]   POLIOVIRUS-INDUCED RNA POLYMERASE AND EFFECTS OF VIRUS-SPECIFIC INHIBITORS ON ITS PRODUCTION [J].
BALTIMORE, D ;
FRANKLIN, RM ;
TAMM, I ;
EGGERS, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1963, 49 (06) :843-&
[3]   Efficient initiation of HCV RNA replication in cell culture [J].
Blight, KJ ;
Kolykhalov, AA ;
Rice, CM .
SCIENCE, 2000, 290 (5498) :1972-1974
[4]   PRODUCTION OF YELLOW-FEVER VIRUS PROTEINS IN INFECTED-CELLS - IDENTIFICATION OF DISCRETE POLYPROTEIN SPECIES AND ANALYSIS OF CLEAVAGE KINETICS USING REGION-SPECIFIC POLYCLONAL ANTISERA [J].
CHAMBERS, TJ ;
MCCOURT, DW ;
RICE, CM .
VIROLOGY, 1990, 177 (01) :159-174
[5]   Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of MicroRNA in host gene expression [J].
Chen, J ;
Li, WX ;
Xie, DX ;
Peng, JR ;
Ding, SW .
PLANT CELL, 2004, 16 (05) :1302-1313
[6]  
de Felipe Pablo, 2004, Genet Vaccines Ther, V2, P13, DOI 10.1186/1479-0556-2-13
[7]   Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons [J].
Diamond, MS ;
Roberts, TG ;
Edgil, D ;
Lu, B ;
Ernst, J ;
Harris, E .
JOURNAL OF VIROLOGY, 2000, 74 (11) :4957-4966
[8]   Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus [J].
Diamond, MS ;
Shrestha, B ;
Mehlhop, E ;
Sitati, E ;
Engle, M .
VIRAL IMMUNOLOGY, 2003, 16 (03) :259-278
[9]   B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus [J].
Diamond, MS ;
Shrestha, B ;
Marri, A ;
Mahan, D ;
Engle, M .
JOURNAL OF VIROLOGY, 2003, 77 (04) :2578-2586
[10]  
Ebel GD, 2001, EMERG INFECT DIS, V7, P650