The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating

被引:52
作者
Cui, L
Aleksandrov, L
Hou, YX
Gentzsch, M
Chen, JH
Riordani, JR
Aleksandrov, AA
机构
[1] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Biomed Engn, Chapel Hill, NC 27599 USA
[4] Mayo Clin Scottsdale, Scottsdale, AZ 85259 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2006年 / 572卷 / 02期
关键词
D O I
10.1113/jphysiol.2005.099457
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel employing the ABC transporter structural motif Deletion of a single residue (Phe508) in the first nucleotide-binding domain (NBD1), which occurs in most patients with cystic fibrosis, impairs both maturation and function of the protein. However, substitution of the Phe508 with small uncharged amino acids, including cysteine, is permissive for maturation. To explore the possible role of the phenylalanine aromatic side chain in channel gating we introduced a cysteine at this position in cysless CFTR, enabling its selective chemical modification by sulfhydryl reagents. Both cysless and wild-type CFTR ion channels have identical mean open times when activated by different nucleotide ligands. Moreover, both channels could be locked in an open state by introducing an ATPase inhibiting mutation (E1371S). However, the introduction of a single cysteine (F508C) prevented the cysless E1371S channel from maintaining the permanently open state, allowing closing to occur. Chemical modification of cysless E1371S/F508C by sulfhydryl reagents was used to probe the role of the side chain in ion channel function. Specifically, benzyl-methanethiosulphonate modification of this variant restored the gating behaviour to that of cysless E1371S containing the wild-type phenylalanine at position 508. This provides the first direct evidence that a specific interaction of the Phe508 aromatic side chain plays a role in determining the residency time in the closed state. Thus, despite the fact that this aromatic side chain is not essential for CFTR folding, it is important in the ion channel function.
引用
收藏
页码:347 / 358
页数:12
相关论文
共 19 条
[1]   Regulation of CFTR ion channel gating by MgATP [J].
Aleksandrov, AA ;
Riordan, JR .
FEBS LETTERS, 1998, 431 (01) :97-101
[2]   The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover [J].
Aleksandrov, L ;
Aleksandrov, AA ;
Chang, XB ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (18) :15419-15425
[3]   Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator [J].
Aleksandrov, L ;
Mengos, A ;
Chang, XB ;
Aleksandrov, A ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :12918-12923
[4]  
CHANG XB, 1993, J BIOL CHEM, V268, P11304
[5]   The ΔF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator [J].
Chen, EY ;
Bartlett, MC ;
Loo, TW ;
Clarke, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (38) :39620-39627
[6]   DEFECTIVE INTRACELLULAR-TRANSPORT AND PROCESSING OF CFTR IS THE MOLECULAR-BASIS OF MOST CYSTIC-FIBROSIS [J].
CHENG, SH ;
GREGORY, RJ ;
MARSHALL, J ;
PAUL, S ;
SOUZA, DW ;
WHITE, GA ;
ORIORDAN, CR ;
SMITH, AE .
CELL, 1990, 63 (04) :827-834
[7]   STOCHASTIC PROPERTIES OF ION CHANNEL OPENINGS AND BURSTS IN A MEMBRANE PATCH THAT CONTAINS 2 CHANNELS - EVIDENCE CONCERNING THE NUMBER OF CHANNELS PRESENT WHEN A RECORD CONTAINING ONLY SINGLE OPENINGS IS OBSERVED [J].
COLQUHOUN, D ;
HAWKES, AG .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1990, 240 (1299) :453-477
[8]   ALTERED CHLORIDE-ION CHANNEL KINETICS ASSOCIATED WITH THE DELTA-F508 CYSTIC-FIBROSIS MUTATION [J].
DALEMANS, W ;
BARBRY, P ;
CHAMPIGNY, G ;
JALLAT, S ;
DOTT, K ;
DREYER, D ;
CRYSTAL, RG ;
PAVIRANI, A ;
LECOCQ, JP ;
LAZDUNSKI, M .
NATURE, 1991, 354 (6354) :526-528
[9]   PROCESSING OF MUTANT CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR IS TEMPERATURE-SENSITIVE [J].
DENNING, GM ;
ANDERSON, MP ;
AMARA, JF ;
MARSHALL, J ;
SMITH, AE ;
WELSH, MJ .
NATURE, 1992, 358 (6389) :761-764
[10]   The F508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR [J].
Du, K ;
Sharma, M ;
Lukacs, GL .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (01) :17-25