SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment

被引:49
作者
Kawarai, T
Wachi, M
Ogino, H
Furukawa, S
Suzuki, K
Ogihara, H
Yamasaki, M
机构
[1] Nihon Univ, Coll Bioresource Sci, Dept Food Sci & Technol, Kanagawa 2528510, Japan
[2] Tokyo Inst Technol, Dept Bioengn, Midori Ku, Kanagawa 2268501, Japan
关键词
D O I
10.1007/s00253-003-1465-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To improve the efficiency of sterilization by high hydrostatic pressure treatment (HPT), it is desirable to know the biochemical process of bacteria most sensitive to the treatment. We investigated growth properties after release from HPT of exponentially growing Escherichia coli K-12 cells. We observed growth retardation after treatment (30 min at 37degreesC) above 75 MPa. Long filamentous cells of about eight times normal cell length were observed at 90 min growth after treatment at 75 MPa. In the subsequent period the filamentous cells divided into normal-sized cells. recA and sulA mutant strains also formed filamentous cells, indicating that filamentation was SulA-independent. Nucleoids segregated normally in the filamentous cells. Only one FtsZ ring (or none) was detected at possible division sites in the elongated cells. Western blotting analysis demonstrated that the amount of FtsZ protein was not affected by the treatment. GTP-dependent in vitro polymerization of either FtsZ protein in E. coli crude extract or purified FtsZ protein, however, was sensitive to HPT. These facts suggest that HPT at 75 MPa denatures a fraction of FtsZ molecules, and that these denatured molecules interfere with the polymerization of functional FtsZ, resulting in the significantly reduced number of FtsZ rings.
引用
收藏
页码:255 / 262
页数:8
相关论文
共 28 条
[1]   Pressure-regulated metabolism in microorganisms [J].
Abe, F ;
Kato, C ;
Horikoshi, K .
TRENDS IN MICROBIOLOGY, 1999, 7 (11) :447-453
[2]   Pressure effects on in vivo microbial processes [J].
Bartlett, DH .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2002, 1595 (1-2) :367-381
[3]   2 PATHWAYS OF DIVISION INHIBITION IN UV-IRRADIATED ESCHERICHIA-COLI [J].
BURTON, P ;
HOLLAND, IB .
MOLECULAR & GENERAL GENETICS, 1983, 190 (02) :309-314
[4]   FTSZ IS AN ESSENTIAL CELL-DIVISION GENE IN ESCHERICHIA-COLI [J].
DAI, K ;
LUTKENHAUS, J .
JOURNAL OF BACTERIOLOGY, 1991, 173 (11) :3500-3506
[5]   PROTEINS REQUIRED FOR ULTRAVIOLET-LIGHT AND CHEMICAL MUTAGENESIS - IDENTIFICATION OF THE PRODUCTS OF THE UMUC LOCUS OF ESCHERICHIA-COLI [J].
ELLEDGE, SJ ;
WALKER, GC .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 164 (02) :175-192
[6]   ROLE OF SULA AND SULB IN FILAMENTATION BY LON MUTANTS OF ESCHERICHIA-COLI K-12 [J].
GOTTESMAN, S ;
HALPERN, E ;
TRISLER, P .
JOURNAL OF BACTERIOLOGY, 1981, 148 (01) :265-273
[7]   sfi-independent filamentation in Escherichia coli is lexA dependent and requires DNA damage for induction [J].
Hill, TM ;
Sharma, B ;
ValjavecGratian, M ;
Smith, J .
JOURNAL OF BACTERIOLOGY, 1997, 179 (06) :1931-1939
[8]   CHROMOSOME PARTITIONING IN ESCHERICHIA-COLI - NOVEL MUTANTS PRODUCING ANUCLEATE CELLS [J].
HIRAGA, S ;
NIKI, H ;
OGURA, T ;
ICHINOSE, C ;
MORI, H ;
EZAKI, B ;
JAFFE, A .
JOURNAL OF BACTERIOLOGY, 1989, 171 (03) :1496-1505
[9]   Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA-protein complexes in E-coli [J].
Hiraga, S ;
Ichinose, C ;
Niki, H ;
Yamazoe, M .
MOLECULAR CELL, 1998, 1 (03) :381-387
[10]  
HOOVER DG, 1989, FOOD TECHNOL-CHICAGO, V43, P99