Squeezing in the sum and difference fields in second harmonic generation

被引:27
作者
Olsen, MK [1 ]
Horowicz, RJ [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
quantum optics; nonlinear optics;
D O I
10.1016/S0030-4018(99)00340-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this article we show that, in intracavity second harmonic generation, a combined quadrature can be chosen which exhibits considerably more squeezing than the amplitude quadratures of the fundamental or second harmonic individually. We also investigate squeezing in single-pass travelling wave second harmonic generation, showing that previously published results are not accurate for arbitrary interaction length, with the behaviour obtained being qualitatively different. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 19 条
[1]   INTERACTIONS BETWEEN LIGHT WAVES IN A NONLINEAR DIELECTRIC [J].
ARMSTRONG, JA ;
BLOEMBERGEN, N ;
DUCUING, J ;
PERSHAN, PS .
PHYSICAL REVIEW, 1962, 127 (06) :1918-+
[2]   SQUEEZING SPECTRA FOR NONLINEAR OPTICAL-SYSTEMS [J].
COLLETT, MJ ;
WALLS, DF .
PHYSICAL REVIEW A, 1985, 32 (05) :2887-2892
[3]   GENERALIZED P-REPRESENTATIONS IN QUANTUM OPTICS [J].
DRUMMOND, PD ;
GARDINER, CW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (07) :2353-2368
[4]   NONEQUILIBRIUM TRANSITIONS IN SUB-2ND HARMONIC-GENERATION .1. SEMI-CLASSICAL THEORY [J].
DRUMMOND, PD ;
MCNEIL, KJ ;
WALLS, DF .
OPTICA ACTA, 1980, 27 (03) :321-335
[5]  
Gardiner C. W., 1985, HDB STOCHASTIC METHO, V3
[6]   QUANTUM CORRELATION BETWEEN FUNDAMENTAL AND 2ND HARMONIC IN SHG [J].
HOROWICZ, RJ .
EUROPHYSICS LETTERS, 1989, 10 (06) :537-542
[7]   SQUEEZED STATES IN HARMONIC-GENERATION OF A LASER-BEAM [J].
KOZIEROWSKI, M ;
KIELICH, S .
PHYSICS LETTERS A, 1983, 94 (05) :213-216
[8]   QUANTUM-NOISE REDUCTION IN TRAVELING-WAVE 2ND-HARMONIC GENERATION [J].
LI, RD ;
KUMAR, P .
PHYSICAL REVIEW A, 1994, 49 (03) :2157-2166
[9]   SQUEEZING AND PHOTON ANTI-BUNCHING IN HARMONIC-GENERATION [J].
MANDEL, L .
OPTICS COMMUNICATIONS, 1982, 42 (06) :437-439
[10]  
Meystre P., 1991, NONCLASSICAL EFFECTS