Competing activation mechanisms in epidemics on networks

被引:125
作者
Castellano, Claudio [2 ,3 ]
Pastor-Satorras, Romualdo [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain
[2] CNR, ISC, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
来源
SCIENTIFIC REPORTS | 2012年 / 2卷
关键词
RANDOM GRAPHS; SPREAD;
D O I
10.1038/srep00371
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In contrast to previous common wisdom that epidemic activity in heterogeneous networks is dominated by the hubs with the largest number of connections, recent research has pointed out the role that the innermost, dense core of the network plays in sustaining epidemic processes. Here we show that the mechanism responsible of spreading depends on the nature of the process. Epidemics with a transient state are boosted by the innermost core. Contrarily, epidemics allowing a steady state present a dual scenario, where either the hub independently sustains activity and propagates it to the rest of the system, or, alternatively, the innermost network core collectively turns into the active state, maintaining it globally. In uncorrelated networks the former mechanism dominates if the degree distribution decays with an exponent larger than 5/2, and the latter otherwise. Topological correlations, rife in real networks, may perturb this picture, mixing the role of both mechanisms.
引用
收藏
页数:6
相关论文
共 38 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
Angeles Serrano M, 2007, Large scale structure and dynamics of complex networks: From information technology to finance and natural sciences, P35
[3]  
[Anonymous], INFECT DIS HUMANS
[4]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]  
Barrat A., 2008, Dynamical Processes on Complex Networks
[7]   Models of social networks based on social distance attachment -: art. no. 056122 [J].
Boguñá, M ;
Pastor-Satorras, R ;
Díaz-Guilera, A ;
Arenas, A .
PHYSICAL REVIEW E, 2004, 70 (05) :8-1
[8]  
Boguñá M, 2003, LECT NOTES PHYS, V625, P127
[9]   Absence of epidemic threshold in scale-free networks with degree correlations -: art. no. 028701 [J].
Boguñá, M ;
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4-028701
[10]   Thresholds for Epidemic Spreading in Networks [J].
Castellano, Claudio ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)