Three-dimensional models of α2A-adrenergic receptor complexes provide a structural explanation for ligand binding

被引:34
作者
Salminen, T
Varis, M
Nyrönen, T
Pihlavisto, M
Hoffrén, AM
Lönnberg, T
Marjamäki, A
Frang, H
Savola, JM
Scheinin, M
Johnson, MS
机构
[1] Abo Akad Univ, Dept Biochem & Pharm, FIN-20520 Turku, Finland
[2] Univ Turku, Turku Ctr Biotechnol, FIN-20520 Turku, Finland
[3] Ctr Comp Sci, CSC, FIN-02101 Espoo, Finland
[4] Juvantia Pharma Ltd, FIN-20520 Turku, Finland
[5] Univ Turku, Dept Pharmacol & Clin Pharmacol, Medicity, FIN-20520 Turku, Finland
关键词
D O I
10.1074/jbc.274.33.23405
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have compared bacteriorhodopsin-based (alpha(2A)-AR(BR)) and rhodopsin-based (alpha(2A)-AR(R)) models of the human alpha(2A)-adrenengic receptor (alpha(2A)-AR) using both docking simulations and experimental receptor alkylation studies with chloroethylclonidine and a-aminoethyl methanethiosulfonate hydrobromide. The results indicate that the alpha(2A)-AR(R) model provides a better explanation for ligand binding than does our alpha(2A)-AR(BR) model. Thus, we have made an extensive analysis of ligand binding to alpha(2A)-AR(R) and engineered mutant receptors using clonidine, para-aminoclonidine, oxymetazoline, 5-bromo-N-(4, 5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14,304), and norepinephrine as ligands, The representative docked ligand conformation was chosen using extensive docking simulations coupled with the identification of favorable interaction sites for chemical groups in the receptor, These ligand-protein complex studies provide a rational explanation at the atomic level for the experimentally observed binding affinities of each of these ligands to the alpha(2A)-adrenergic receptor.
引用
收藏
页码:23405 / 23413
页数:9
相关论文
共 30 条
[1]   An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors [J].
Baldwin, JM ;
Schertler, GFX ;
Unger, VM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (01) :144-164
[2]   A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995) [J].
Cornell, WD ;
Cieplak, P ;
Bayly, CI ;
Gould, IR ;
Merz, KM ;
Ferguson, DM ;
Spellmeyer, DC ;
Fox, T ;
Caldwell, JW ;
Kollman, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (09) :2309-2309
[3]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[4]  
FRASER CM, 1989, J BIOL CHEM, V264, P11754
[5]   ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY - A RAPID ACCESS TO ATOMIC CHARGES [J].
GASTEIGER, J ;
MARSILI, M .
TETRAHEDRON, 1980, 36 (22) :3219-3228
[6]   A RESOLUTION-SENSITIVE PROCEDURE FOR COMPARING PROTEIN SURFACES AND ITS APPLICATION TO THE COMPARISON OF ANTIGEN-COMBINING SITES [J].
GERSTEIN, M .
ACTA CRYSTALLOGRAPHICA SECTION A, 1992, 48 :271-276
[8]  
Goodsell DS, 1996, J MOL RECOGNIT, V9, P1, DOI 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO
[9]  
2-6
[10]   AUTOMATED DOCKING OF SUBSTRATES TO PROTEINS BY SIMULATED ANNEALING [J].
GOODSELL, DS ;
OLSON, AJ .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1990, 8 (03) :195-202