Topological mixing with ghost rods

被引:50
作者
Gouillart, E [1 ]
Thiffeault, JL [1 ]
Finn, MD [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.73.036311
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call "ghost rods", because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Topological signature of deterministic chaos in short nonstationary signals from an optical parametric oscillator [J].
Amon, A ;
Lefranc, M .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :094101-1
[2]  
[Anonymous], ABH MATH SEMIN U HAM
[3]   The development of chaotic advection [J].
Aref, H .
PHYSICS OF FLUIDS, 2002, 14 (04) :1315-1325
[4]   STIRRING BY CHAOTIC ADVECTION [J].
AREF, H .
JOURNAL OF FLUID MECHANICS, 1984, 143 (JUN) :1-21
[5]  
Arnold VI, 2013, Mathematical methods of classical mechanics
[6]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[7]   TRAIN-TRACKS FOR SURFACE HOMEOMORPHISMS [J].
BESTVINA, M ;
HANDEL, M .
TOPOLOGY, 1995, 34 (01) :109-140
[8]  
Birman J. S., 2005, HDB KNOT THEORY
[9]  
Bowen R., 1978, Lecture Notes in Mathematics, V668, P21
[10]   Topological fluid mechanics of point vortex motions [J].
Boyland, P ;
Stremler, M ;
Aref, H .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 175 (1-2) :69-95