Applications and generalizations of Fisher-Hartwig asymptotics

被引:46
作者
Forrester, PJ [1 ]
Frankel, NE
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
关键词
D O I
10.1063/1.1699484
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fisher-Hartwig asymptotics refers to the large n form of a class of Toeplitz determinants with singular generating functions. This class of Toeplitz determinants occurs in the study of the spin-spin correlations for the two-dimensional Ising model, and the ground state density matrix of the impenetrable Bose gas, amongst other problems in mathematical physics. We give a new application of the original Fisher-Hartwig formula to the asymptotic decay of the Ising correlations above T-c, while the study of the Bose gas density matrix leads us to generalize the Fisher-Hartwig formula to the asymptotic form of random matrix averages over the classical groups and the Gaussian and Laguerre unitary matrix ensembles. Another viewpoint of our generalizations is that they extend to Hankel determinants the Fisher-Hartwig asymptotic form known for Toeplitz determinants. (C) 2004 American Institute of Physics.
引用
收藏
页码:2003 / 2028
页数:26
相关论文
共 51 条
[1]  
[Anonymous], LOG GASES RANDOM MAT
[2]  
Baik J, 2001, DUKE MATH J, V109, P205
[3]   Finite-N fluctuation formulas for random matrices [J].
Baker, TH ;
Forrester, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) :1371-1386
[4]   The Calogero-Sutherland model and generalized classical polynomials [J].
Baker, TH ;
Forrester, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :175-216
[5]  
Barnes E., 1899, Q. J. Math, V31, P264
[6]  
Basor EL, 2002, OPER THEORY ADV APPL, V135, P61
[7]   THE FISHER-HARTWIG CONJECTURE AND TOEPLITZ EIGENVALUES [J].
BASOR, EL ;
MORRISON, KE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 202 :129-142
[8]  
Basor EL, 2001, MATH NACHR, V228, P5, DOI 10.1002/1522-2616(200108)228:1<5::AID-MANA5>3.0.CO
[9]  
2-E
[10]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808