Direct control of cell cycle gene expression by proto-oncogene product ACTR, an its autoregulation underlies its transforming activity

被引:55
作者
Louie, Maggie C. [1 ]
Revenko, Alexey S. [1 ]
Zou, June X. [1 ]
Yao, Jennifer [1 ]
Chen, Hong-Wu [1 ]
机构
[1] Univ Calif Davis, Canc Ctr, Dept Biochem & Mol Med, Sacramento, CA 95817 USA
关键词
D O I
10.1128/MCB.26.10.3810-3823.2006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ACTR (also called AIB1 and SRC-3) was identified as a coactivator for nuclear receptors and is linked to multiple types of human cancer due to its frequent overexpression. However, the molecular mechanism of ACTR oncogenicity and its function independent of nuclear receptors remain to be defined. We demonstrate here that ACTR is required for both normal and malignant human cells to effectively enter S phase. RNA interference-mediated depletion and chromatin immunoprecipitation assays show that endogenous ACTR directly controls the expression of genes important for initiation of DNA replication, which include cdc6, cdc25A, MCM7, cyclin E, and Cdk2. Moreover, consistent with its critical role in cell cycle control, ACTR expression appears to be cell cycle regulated, which involves E2F. Interestingly, ACTR is recruited to its own promoter at the G(1)/S transition and activates its own expression, suggesting a positive feedback mechanism for ACTR action in the control of cell cycle progression and for its aberrant expression in cancers. Importantly, overexpression of ACTR alone transforms human mammary epithelial cells, which requires its association with E2F. These findings reveal a novel role for ACTR in cell cycle control and support the notion that the ability of aberrant ACTR to deregulate the cell cycle through E2F underlies its oncogenicity in human cancers.
引用
收藏
页码:3810 / 3823
页数:14
相关论文
共 68 条
[1]   A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells [J].
Ait-Si-Ali, S ;
Guasconi, V ;
Fritsch, L ;
Yahi, H ;
Sekhri, R ;
Naguibneva, I ;
Robin, P ;
Cabon, F ;
Polesskaya, A ;
Harel-Bellan, A .
EMBO JOURNAL, 2004, 23 (03) :605-615
[2]   The E2F family: specific functions and overlapping interests [J].
Attwooll, C ;
Denchi, EL ;
Helin, K .
EMBO JOURNAL, 2004, 23 (24) :4709-4716
[3]  
Bouras T, 2001, CANCER RES, V61, P903
[4]  
Brake T, 2003, CANCER RES, V63, P8173
[5]   Over-expression of cyclin A is highly associated with early relapse and reduced survival in patients with primary breast carcinomas [J].
Bukholm, IRK ;
Bukholm, G ;
Nesland, JM .
INTERNATIONAL JOURNAL OF CANCER, 2001, 93 (02) :283-287
[6]   A common set of gene regulatory networks links metabolism and growth inhibition [J].
Cam, H ;
Balciunaite, E ;
Blais, A ;
Spektor, A ;
Scarpulla, RC ;
Young, R ;
Kluger, Y ;
Dynlacht, BD .
MOLECULAR CELL, 2004, 16 (03) :399-411
[7]   Emerging roles for E2F: Beyond the G1/S transition and DNA replication [J].
Cam, H ;
Dynlacht, BD .
CANCER CELL, 2003, 3 (04) :311-316
[8]   Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase [J].
Chen, HW ;
Lin, RJ ;
Xie, W ;
Wilpitz, D ;
Evans, RM .
CELL, 1999, 98 (05) :675-686
[9]   Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300 [J].
Chen, HW ;
Lin, RJ ;
Schiltz, RL ;
Chakravarti, D ;
Nash, A ;
Nagy, L ;
Privalsky, ML ;
Nakatani, Y ;
Evans, RM .
CELL, 1997, 90 (03) :569-580
[10]   AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor [J].
de Mora, JF ;
Brown, M .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (14) :5041-5047