The proteasome α-subunit XAPC7 interacts specifically with Rab7 and late endosomes

被引:61
作者
Dong, JB [1 ]
Chen, W [1 ]
Welford, A [1 ]
Wandinger-Ness, A [1 ]
机构
[1] Univ New Mexico, Sch Med, HSC, Dept Pathol,Mol Trafficking Lab, Albuquerque, NM 87131 USA
关键词
D O I
10.1074/jbc.M401022200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rab7 is a key regulatory protein governing early to late endocytic membrane transport. In this study the proteasome alpha-subunit XAPC7 (also known as PSMA7, RC6-1, and HSPC in mammals) was identified to interact specifically with Rab7 and was recruited to multivesicular late endosomes through this interaction. The protein interaction domains were localized to the C terminus of XAPC7 and the N terminus of Rab7. XAPC7 was not found on early or recycling endosomes, but could be recruited to recycling endosomes by expression of a Rab7-(1-174) Rab11-(160-202) chimera, establishing a central role for Rab7 in the membrane recruitment of XAPC7. Although XAPC7 could be shown to associate with membranes bearing ubiquitinated cargo, overexpression had no impact on steady-state ubiquitinated protein levels. Most notably, overexpression of XAPC7 was found to impair late endocytic transport of two different membrane proteins, including EGFR known to be highly dependent on ubiquitination and proteasome activity for proper endocytic sorting and lysosomal transport. Decreased late endocytic transport caused by XAPC7 overexpression was partially rescued by coexpression of wild-type Rab7, suggesting a negative regulatory role for XAPC7. Nevertheless, Rab7 itself was not subject to XAPC7-dependent proteasomal degradation. Together the data establish the first direct molecular link between the endocytic trafficking and cytosolic degradative machineries.
引用
收藏
页码:21334 / 21342
页数:9
相关论文
共 63 条
[1]   Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination [J].
Alwan, HAJ ;
van Zoelen, EJJ ;
van Leeuwen, JEM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (37) :35781-35790
[2]   INTERACTIONS OF 3 DOMAINS DISTINGUISHING THE RAS-RELATED GTP-BINDING PROTEINS YPT1 AND SEC4 [J].
BRENNWALD, P ;
NOVICK, P .
NATURE, 1993, 362 (6420) :560-563
[3]   A EUKARYOTIC TRANSCRIPTIONAL ACTIVATOR BEARING THE DNA SPECIFICITY OF A PROKARYOTIC REPRESSOR [J].
BRENT, R ;
PTASHNE, M .
CELL, 1985, 43 (03) :729-736
[4]   THE SMALL GTPASE RAB5 FUNCTIONS AS A REGULATORY FACTOR IN THE EARLY ENDOCYTIC PATHWAY [J].
BUCCI, C ;
PARTON, RG ;
MATHER, IH ;
STUNNENBERG, H ;
SIMONS, K ;
HOFLACK, B ;
ZERIAL, M .
CELL, 1992, 70 (05) :715-728
[5]   Rab7: A key to lysosome biogenesis [J].
Bucci, C ;
Thomsen, P ;
Nicoziani, P ;
McCarthy, J ;
van Deurs, B .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (02) :467-480
[6]   Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion [J].
Bulteau, AL ;
Lundberg, KC ;
Humphries, KM ;
Sadek, HA ;
Szweda, PA ;
Friguet, B ;
Szweda, LI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (32) :30057-30063
[7]   Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome [J].
Cagney, G ;
Uetz, P ;
Fields, S .
PHYSIOLOGICAL GENOMICS, 2001, 7 (01) :27-34
[8]   Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes [J].
Cantalupo, G ;
Alifano, P ;
Roberti, V ;
Bruni, CB ;
Bucci, C .
EMBO JOURNAL, 2001, 20 (04) :683-693
[9]   LOCALIZATION OF LOW-MOLECULAR-WEIGHT GTP BINDING-PROTEINS TO EXOCYTIC AND ENDOCYTIC COMPARTMENTS [J].
CHAVRIER, P ;
PARTON, RG ;
HAURI, HP ;
SIMONS, K ;
ZERIAL, M .
CELL, 1990, 62 (02) :317-329
[10]   HYPERVARIABLE C-TERMINAL DOMAIN OF RAB PROTEINS ACTS AS A TARGETING SIGNAL [J].
CHAVRIER, P ;
GORVEL, JP ;
STELZER, E ;
SIMONS, K ;
GRUENBERG, J ;
ZERIAL, M .
NATURE, 1991, 353 (6346) :769-772