The role of transmembrane helix 5 in agonist binding to the human H3 receptor

被引:77
作者
Uveges, AJ [1 ]
Kowal, D [1 ]
Zhang, YX [1 ]
Spangler, TB [1 ]
Dunlop, J [1 ]
Semus, S [1 ]
Jones, PG [1 ]
机构
[1] Wyeth Neurosci, Princeton, NJ 08543 USA
关键词
D O I
10.1124/jpet.301.2.451
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
We have used alanine scanning mutagenesis to identify residues in transmembrane domain 5 of the histamine H3 receptor that are important for agonist binding. All of the mutants generated were functionally expressed as demonstrated by their ability to bind [I-125] iodoproxyfan with comparable affinity to the wild-type receptor and their ability to inhibit forskolin-stimulated cAMP formation when activated by histamine. Many mutations produced small changes in the potency of histamine, but the most pronounced reduction in potency and affinity of the agonists, histamine, R-alpha-methylhistamine, imetit, and impentamine, was seen with mutation of glutamate 206. Our modeling suggests that this residue plays a key role in ligand binding by interacting with the imidazole ring of histamine. Interestingly, L199A greatly reduced agonist potency in functional assays but had only minor effects on agonist affinity, implicating a role for this residue in the mechanism of receptor activation. We also studied the functional effects of the mutations by linking the receptor to calcium signaling using a chimeric G protein. A comparison of the two functional assays demonstrated contrasting effects on agonist activity. Histamine, imetit, and impentamine were full agonists in the cAMP assay, but imetit exhibited only partial agonist activity through the chimeric G protein. Furthermore, impentamine, another potent agonist in the cAMP assay, was only able to activate the E206A mutant in the calcium assay despite being inactive at the wild-type receptor. These observations suggest that the agonist receptor complexes formed by these three different H3 agonists are not conformationally equivalent.
引用
收藏
页码:451 / 458
页数:8
相关论文
共 31 条
[1]   Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: Evidence for agonist-directed trafficking of receptor stimulus [J].
Berg, KA ;
Maayani, S ;
Goldfarb, J ;
Scaramellini, C ;
Leff, P ;
Clarke, WP .
MOLECULAR PHARMACOLOGY, 1998, 54 (01) :94-104
[2]  
Conklin BR, 1996, MOL PHARMACOL, V50, P885
[3]  
CURTIS CAM, 1989, J BIOL CHEM, V264, P489
[4]  
FRASER CM, 1989, MOL PHARMACOL, V36, P840
[5]   MOLECULAR-CLONING OF THE HUMAN HISTAMINE H1 RECEPTOR GENE [J].
FUKUI, H ;
FUJIMOTO, K ;
MIZUGUCHI, H ;
SAKAMOTO, K ;
HORIO, Y ;
TAKAI, S ;
YAMADA, K ;
ITO, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1994, 201 (02) :894-901
[6]   MOLECULAR-CLONING OF THE HUMAN HISTAMINE-H2-RECEPTOR [J].
GANTZ, I ;
MUNZERT, G ;
TASHIRO, T ;
SCHAFFER, M ;
WANG, LD ;
DELVALLE, J ;
YAMADA, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 178 (03) :1386-1392
[7]  
GANTZ I, 1992, J BIOL CHEM, V267, P20840
[8]  
Hill SJ, 1997, PHARMACOL REV, V49, P253
[9]   The amino terminus of Gαz is required for receptor recognition, whereas its α4/β6 loop is essential for inhibition of adenylyl cyclase [J].
Ho, MKC ;
Wong, YH .
MOLECULAR PHARMACOLOGY, 2000, 58 (05) :993-1000
[10]   AGONIST-RECEPTOR EFFICACY .2. AGONIST TRAFFICKING OF RECEPTOR SIGNALS [J].
KENAKIN, T .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1995, 16 (07) :232-238