Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes

被引:621
作者
Golubkov, Andrey W. [1 ]
Fuchs, David [1 ]
Wagner, Julian [2 ]
Wiltsche, Helmar [3 ]
Stangl, Christoph [4 ]
Fauler, Gisela [4 ]
Voitic, Gernot [5 ]
Thaler, Alexander [1 ]
Hacker, Viktor [5 ]
机构
[1] VIRTUAL VEHICLE Res Ctr, A-8010 Graz, Austria
[2] Graz Ctr Electron Microscopy, A-8010 Graz, Austria
[3] Graz Univ Technol, Inst Analyt Chem & Food Chem, A-8010 Graz, Austria
[4] Varta Micro Innovat GmbH, A-8010 Graz, Austria
[5] Graz Univ Technol, Inst Chem Engn & Environm Technol, A-8010 Graz, Austria
关键词
GAS GENERATION; HIGH-POWER; LITHIUM; ELECTROLYTES; STABILITY; BEHAVIOR; DECOMPOSITION; GRAPHITE; PERFORMANCE; MECHANISM;
D O I
10.1039/c3ra45748f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li-ion batteries play an ever-increasing role in our daily life. Therefore, it is important to understand the potential risks involved with these devices. In this work we demonstrate the thermal runaway characteristics of three types of commercially available Li-ion batteries with the format 18650. The Li-ion batteries were deliberately driven into thermal runaway by overheating under controlled conditions. Cell temperatures up to 850 degrees C and a gas release of up to 0.27 mol were measured. The main gas components were quantified with gas-chromatography. The safety of Li-ion batteries is determined by their composition, size, energy content, design and quality. This work investigated the influence of different cathode-material chemistry on the safety of commercial graphite-based 18650 cells. The active cathode materials of the three tested cell types were (a) LiFePO4, (b) Li(Ni0.45Mn0.45Co0.10)O-2 and (c) a blend of LiCoO2 and Li(Ni0.50Mn0.25Co0.25)O-2.
引用
收藏
页码:3633 / 3642
页数:10
相关论文
共 48 条
[1]   Diagnostic examination of thermally abused high-power lithium-ion cells [J].
Abraham, D. P. ;
Roth, E. P. ;
Kostecki, R. ;
McCarthy, K. ;
MacLaren, S. ;
Doughty, D. H. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :648-657
[2]   Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems [J].
Aurbach, D ;
Zaban, A ;
Ein-Eli, Y ;
Weissman, I ;
Chusid, O ;
Markovsky, B ;
Levi, M ;
Levi, E ;
Schechter, A ;
Granot, E .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :91-98
[3]   THE BEHAVIOR OF LITHIUM ELECTRODES IN MIXTURES OF ALKYL CARBONATES AND ETHERS [J].
AURBACH, D ;
GOFER, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (12) :3529-3536
[4]   THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES [J].
AURBACH, D ;
EINELI, Y ;
MARKOVSKY, B ;
ZABAN, A ;
LUSKI, S ;
CARMELI, Y ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :2882-2890
[5]   RECENT STUDIES OF THE LITHIUM LIQUID ELECTROLYTE INTERFACE - ELECTROCHEMICAL, MORPHOLOGICAL AND SPECTRAL STUDIES OF A FEW IMPORTANT SYSTEMS [J].
AURBACH, D ;
ZABAN, A ;
GOFER, Y ;
ELY, YE ;
WEISSMAN, I ;
CHUSID, O ;
ABRAMSON, O .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :76-84
[6]   Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3CO1/3Mn1/3)O2 [J].
Belharouak, I ;
Lu, WQ ;
Vissers, D ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (02) :329-335
[7]   Investigation of the kinetic mechanism in overcharge process for Li-ion battery [J].
Belov, Dmitry ;
Yang, Mo-Hua .
SOLID STATE IONICS, 2008, 179 (27-32) :1816-1821
[8]   MRSST a new method to evaluate thermal stability of electrolytes for lithium ion batteries [J].
Botte, GG ;
Bauer, TJ .
JOURNAL OF POWER SOURCES, 2003, 119 :815-820
[9]   Suppression of toxic compounds produced in the decomposition of lithium-ion battery electrolytes [J].
Campion, CL ;
Li, WT ;
Euler, WB ;
Lucht, BL ;
Ravdel, B ;
DiCarlo, JF ;
Gitzendanner, R ;
Abraham, KM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (07) :A194-A197
[10]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334