Spectroscopy with electronic terahertz techniques

被引:5
作者
van der Weide, DW [1 ]
Murakowski, J [1 ]
Keilmann, F [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
来源
TERAHERTZ SPECTROSCOPY AND APPLICATIONS 11 | 1999年 / 3828卷
关键词
electronic terahertz techniques; gas spectroscopy; reflection spectroscopy; nonlinear transmission lines; samplers; coherent measurements; dual source interferometer;
D O I
10.1117/12.361046
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report gas absorption spectra and energetic material reflection spectra measured with an all-electronic terahertz (THz) spectrometer. This instrument uses phase-locked microwave sources to drive picosecond GaAs nonlinear transmission lines, enabling measurement of both broadband spectra and single lines with hertz-level precision, a new mode of operation not readily available with optoelectronic THz techniques. We take two approaches to coherent measurements: (1) spatially combining the freely propagating beams from two coherent picosecond pulse generators (which have discrete spectra ranging from similar to 6 to > 500 GHz), or (2) using a more conventional coherent source/detector arrangement with sampling detectors. The first method employs a dual-source interferometer (DSI) modulating each harmonic of one source with a precisely-offset harmonic from the other source-both sources being driven with stable phase-locked synthesizers-the resultant beat frequency can be low enough for detection by a standard composite bolometer. Room-temperature detection possibilities for the DSI include antenna-coupled Schottky diodes. Finally, we have recently introduced a reflectometer based on serrodyne modulation of a linearized delay line, using a technique that is process-compatible with pulse generator circuits.
引用
收藏
页码:276 / 284
页数:9
相关论文
共 25 条
[2]   Distributed broad-band frequency translator and its use in a 1-3-GHz coherent reflectometer [J].
Akkaraekthalin, P ;
Kee, S ;
van der Weide, DW .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (12) :2244-2250
[3]  
AKKARAEKTHALIN P, 1998, 1998 IEEE MTT S INT, V3, P1431
[4]   ALL-ELECTRONIC TERAHERTZ SPECTROSCOPY SYSTEM WITH TERAHERTZ FREE-SPACE PULSES [J].
BOSTAK, JS ;
VANDERWEIDE, DW ;
BLOOM, DM ;
AULD, BA ;
OZBAY, E .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1994, 11 (12) :2561-2565
[5]  
BOSTAK JS, 1994, THESIS STANFORD U
[6]  
CHANTRY GW, 1984, LONG WAVE OPTICS, V1
[7]   TIME-DOMAIN TERAHERTZ IMPULSE RANGING STUDIES [J].
CHEVILLE, RA ;
GRISCHKOWSKY, D .
APPLIED PHYSICS LETTERS, 1995, 67 (14) :1960-1962
[8]   INTERFEROMETRIC CHARACTERIZATION OF 160 FS FAR-INFRARED LIGHT-PULSES [J].
GREENE, BI ;
FEDERICI, JF ;
DYKAAR, DR ;
JONES, RR ;
BUCKSBAUM, PH .
APPLIED PHYSICS LETTERS, 1991, 59 (08) :893-895
[9]   FAR-INFRARED TIME-DOMAIN SPECTROSCOPY WITH TERAHERTZ BEAMS OF DIELECTRICS AND SEMICONDUCTORS [J].
GRISCHKOWSKY, D ;
KEIDING, S ;
VANEXTER, M ;
FATTINGER, C .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1990, 7 (10) :2006-2015
[10]  
HERSKOVITZ D, 1995, MICROWAVE J, V38, P26