Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs

被引:120
作者
Nuttelman, CR
Tripodi, MC
Anseth, KS [1 ]
机构
[1] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
关键词
human mesenchymal stem cells; osteogenic differentiation; cell encapsulation; dexamethasone; real-time reverse transcription polymerase chain reaction;
D O I
10.1002/jbm.a.30537
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Synthetic hydrogels represent highly controlled environments for three-dimensional culture of human mesenchymal stem cells (hMSCs). Encapsulated hMSCs are presented with a "blank" environment, and this environment can be closely controlled in order to elicit an osteogenic response. In vitro, dexamethasone is an efficient and reliable factor that leads to the osteogenic differentiation of human mesenchymal stem cells (hMSCs). The aim of this work was to develop a dexamethasone-releasing poly(ethylene glycol) (PEG)-based hydrogel scaffold to deliver dexamethasone to encapsulated cells in a sustained manner. To accomplish this goal, dexamethasone was covalently linked to a photoreactive mono-acrylated PEG molecule through a degradable lactide bond, and this molecule was covalently incorporated into the PEG hydrogel during photopolymerization. Over time, hydrolysis of the ester bonds resulted in dexamethasone release from the gel. The biological activity of the released dexamethasone, vas verified in monolayer cell culture and in three-dimensional culture (i.e., in the gel) by the ability of hMSCs to express osteogenic genes, including alkaline phosphatase, osteopontin, and core binding factor alpha 1, as measured using real-time reverse transcription polymerase chain reaction (RT-PCR). These studies indicate that encapsulated hMSCs are capable of osteogenic differentiation in response to released dexamethasone. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 32 条
[1]  
ALNE JM, 2001, J BONE JOINT SURG S1, V83, pS161
[2]   In situ forming degradable networks and their application in tissue engineering and drug delivery [J].
Anseth, KS ;
Metters, AT ;
Bryant, SJ ;
Martens, PJ ;
Elisseeff, JH ;
Bowman, CN .
JOURNAL OF CONTROLLED RELEASE, 2002, 78 (1-3) :199-209
[3]   Phenotypic effects of continuous or discontinuous treatment with dexamethasone and/or calcitriol on osteoblasts differentiated from rat bone marrow stromal cells [J].
Atmani, H ;
Audrain, C ;
Mercier, L ;
Chappard, D ;
Basle, MF .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2002, 85 (03) :640-650
[4]   DETERMINATION OF THE CAPACITY FOR PROLIFERATION AND DIFFERENTIATION OF OSTEOPROGENITOR CELLS IN THE PRESENCE AND ABSENCE OF DEXAMETHASONE [J].
BELLOWS, CG ;
HEERSCHE, JNM ;
AUBIN, JE .
DEVELOPMENTAL BIOLOGY, 1990, 140 (01) :132-138
[5]   BONE-MARROW DERIVED STROMAL CELL-LINE EXPRESSING OSTEOBLASTIC PHENOTYPE INVITRO AND OSTEOGENIC CAPACITY INVIVO [J].
BENAYAHU, D ;
KLETTER, Y ;
ZIPORI, D ;
WIENTROUB, S .
JOURNAL OF CELLULAR PHYSIOLOGY, 1989, 140 (01) :1-7
[6]  
Bouhadir KH, 2000, J PHARM SCI-US, V89, P910, DOI 10.1002/1520-6017(200007)89:7<910::AID-JPS8>3.0.CO
[7]  
2-#
[8]   Hydrogels for combination delivery of antineoplastic agents [J].
Bouhadir, KH ;
Alsberg, E ;
Mooney, DJ .
BIOMATERIALS, 2001, 22 (19) :2625-2633
[9]   DIFFERENTIATION OF HUMAN BONE-MARROW OSTEOGENIC STROMAL CELLS IN VITRO - INDUCTION OF THE OSTEOBLAST PHENOTYPE BY DEXAMETHASONE [J].
CHENG, SL ;
YANG, JW ;
RIFAS, L ;
ZHANG, SF ;
AVIOLI, LV .
ENDOCRINOLOGY, 1994, 134 (01) :277-286
[10]   Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties [J].
Cypes, SH ;
Saltzman, WM ;
Giannelis, EP .
JOURNAL OF CONTROLLED RELEASE, 2003, 90 (02) :163-169