Flexible smoothing with B-splines and penalties

被引:2495
作者
Eilers, PHC [1 ]
Marx, BD [1 ]
机构
[1] LOUISIANA STATE UNIV, DEPT EXPT STAT, BATON ROUGE, LA 70803 USA
关键词
generalized linear models; smoothing; nonparametric models; splines; density estimation;
D O I
10.1214/ss/1038425655
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
B-splines are attractive for nonparametric modelling, but choosing the optimal number and positions of knots is a complex task. Equidistant knots can be used, but their small and discrete number allows only limited control over smoothness and fit. We propose to use a relatively large number of knots and a difference penalty on coefficients of adjacent B-splines. We show connections to the familiar spline penalty on the integral of the squared second derivative. A short overview of B-splines, of their construction and of penalized likelihood is presented. We discuss properties of penalized B-splines and propose various criteria for the choice of an optimal penalty parameter. Nonparametric logistic regression, density estimation and scatterplot smoothing are used as examples. Some details of the computations are presented.
引用
收藏
页码:89 / 102
页数:14
相关论文
共 36 条