共 40 条
The transforming growth factor-β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury
被引:641
作者:
Kempf, T
Eden, M
Strelau, J
Naguib, M
Willenbockel, C
Tongers, J
Heineke, J
Kotlarz, D
Xu, J
Molkentin, JD
Niessen, HW
Drexler, H
Wollert, KC
机构:
[1] Hannover Med Sch, Abt Kardiol & Angiol, D-30625 Hannover, Germany
[2] Univ Heidelberg, Dept Neuroanat, Heidelberg, Germany
[3] Univ Cincinnati, Div Mol Cardiovasc Biol, Cincinnati, OH USA
[4] Univ Amsterdam, Med Ctr, Dept Pathol, Amsterdam, Netherlands
关键词:
growth-differentiation factor-15;
ischemia/reperfusion;
apoptosis;
PI3K;
Akt;
D O I:
10.1161/01.RES.0000202805.73038.48
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Data from the Women's Health Study show that serum levels of growth-differentiation factor-15 (GDF-15), a distant member of the transforming growth factor-beta superfamily, are an independent risk indicator for adverse cardiovascular events. However, the cellular sources, upstream regulators, and functional effects of GDF-15 in the cardiovascular system have not been elucidated. We have identified GDF-15 by cDNA expression array analysis as a gene that is strongly upregulated by nitrosative stress in cultured cardiomyocytes isolated from 1- to 3-day-old rats. GDF-15 mRNA and pro-peptide expression levels were also induced in cardiomyocytes subjected to simulated ischemia/reperfusion (I/R) via NO-peroxynitrite-dependent signaling pathways. GDF-15 was actively secreted into the culture supernatant, suggesting that it might exert autocrine/paracrine effects during I/R. To explore the in vivo relevance of these findings, mice were subjected to transient or permanent coronary artery ligation. Myocardial GDF-15 mRNA and pro-peptide abundance rapidly increased in the area-at-risk after ischemic injury. Similarly, patients with an acute myocardial infarction had enhanced myocardial GDF-15 pro-peptide expression levels. As shown by immunohistochemistry, cardiomyocytes in the ischemic area contributed significantly to the induction of GDF-15 in the infarcted human heart. To delineate the function of GDF-15 during I/R, Gdf-15 gene-targeted mice were subjected to transient coronary artery ligation for 1 hour followed by reperfusion for 24 hours. Gdf-15-deficient mice developed greater infarct sizes and displayed more cardiomyocyte apoptosis in the infarct border zone after I/R compared with wild-type littermates, indicating that endogenous GDF-15 limits myocardial tissue damage in vivo. Moreover, treatment with recombinant GDF-15 protected cultured cardiomyocytes from apoptosis during simulated I/R as shown by histone ELISA, TUNEL/Hoechst staining, and annexin V/propidium iodide fluorescence-activated cell sorting (FACS) analysis. Mechanistically, the prosurvival effects of GDF-15 in cultured cardiomyocytes were abolished by phosphoinositide 3-OH kinase inhibitors and adenoviral expression of dominant-negative Akt1 (K179M mutation). In conclusion, our study identifies induction of GDF-15 in the heart as a novel defense mechanism that protects from I/R injury.
引用
收藏
页码:351 / 360
页数:10
相关论文