A new one-parameter deformation of the exponential function

被引:81
作者
Kaniadakis, G
Scarfone, AM
机构
[1] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
[2] Politecn Torino, Ist Nazl Fis Mat, Turin, Italy
关键词
deformed exponential function; deformed algebra; deformed statistical distribution;
D O I
10.1016/S0378-4371(01)00642-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, in Kaniadakis (Physica A 296 (2001) 405), a new one-parameter deformation for the exponential function exp({kappa})(x) = (root1 + kappa(2)x(2) + kappax)(1/K); exp({0}) (x) = exp(x), which presents a power-law asymptotic behaviour, has been proposed. The statistical distribution f = Z(-1) exp({kappa})[-beta(E - mu)], has been obtained both as stable stationary state of a proper nonlinear kinetics and as the state which maximizes a new entropic form. In the present contribution, starting from the kappa-algebra and after introducing the h-analysis, we obtain the kappa-exponential exp({kappa}) (x) as the eigenstate of the kappa-derivative and study its main mathematical properties. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:69 / 75
页数:7
相关论文
共 8 条
[1]  
ABE S, 2001, LECT NOTES PHYSICS, V560
[2]   On a q-generalization of circular and hyperbolic functions [J].
Borges, EP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23) :5281-5288
[3]   Non-linear kinetics underlying generalized statistics [J].
Kaniadakis, G .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 296 (3-4) :405-425
[4]   H-theorem and generalized entropies within the framework of nonlinear kinetics [J].
Kaniadakis, G .
PHYSICS LETTERS A, 2001, 288 (5-6) :283-291
[5]  
LIH JS, 2001, ARXIVCONDMAT0109009
[6]  
TRIBELSKY MI, 2001, ARXIVMATHPR0106037
[7]  
TSALLIS C, 1988, J STAT PHYS, V52, P27
[8]  
Tsallis C., 1994, QUIM NOVA, V17, P468