Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents

被引:195
作者
Souza, GR
Christianson, DR
Staquicini, FI
Ozawa, MG
Snyder, EY
Sidman, RL
Miller, JH
Arap, W
Pasqualini, R
机构
[1] Harvard Univ, Sch Med, Boston, MA 02115 USA
[2] Harvard Inst Med, Beth Israel Deaconess Med Ctr, Dept Neurol, Boston, MA 02115 USA
[3] Univ Texas, MD Anderson Canc Ctr, Houston, TX 77030 USA
[4] Burnham Inst, La Jolla, CA 92037 USA
[5] George Washington Univ, Dept Chem, Washington, DC 20052 USA
关键词
target; fractal; hydrogel; stem cell; assembly;
D O I
10.1073/pnas.0509739103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological molecular assemblies are excellent models for the development of nanoengineered systems with desirable biomedical properties. Here we report an approach for fabrication of spontaneous, biologically active molecular networks consisting of bacteriophage (phage) directly assembled with gold (Au) nanoparticles (termed Au-phage). We show that when the phage are engineered so that each phage particle displays a peptide, such networks preserve the cell surface receptor binding and internalization attributes of the displayed peptide. The spontaneous organization of these targeted networks can be manipulated further by incorporation of imidazole (Au-phage-imid), which induces changes in fractal structure and near-infrared optical properties. The networks can be used as labels for enhanced fluorescence and dark-field microscopy, surf ace-enhanced Raman scattering detection, and near-infrared photon-to-heat conversion. Together, the physical and biological features within these targeted networks offer convenient multifunctional integration within a single entity with potential for nanotechnology-based biomedical applications.
引用
收藏
页码:1215 / 1220
页数:6
相关论文
共 43 条
[1]  
ALBELDA SM, 1990, CANCER RES, V50, P6757
[2]  
[Anonymous], ENCY NANOSCIENCE NAN
[3]  
[Anonymous], [No title captured]
[4]   Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model [J].
Arap, W ;
Pasqualini, R ;
Ruoslahti, E .
SCIENCE, 1998, 279 (5349) :377-380
[5]   Steps toward mapping the human vasculature by phage display [J].
Arap, W ;
Kolonin, MG ;
Trepel, M ;
Lahdenranta, J ;
Cardó-Vila, M ;
Giordano, RJ ;
Mintz, PJ ;
Ardelt, PU ;
Yao, VJ ;
Vidal, CI ;
Chen, L ;
Flamm, A ;
Valtanen, H ;
Weavind, LM ;
Hicks, ME ;
Pollock, RE ;
Botz, GH ;
Bucana, CD ;
Koivunen, E ;
Cahill, D ;
Troncoso, P ;
Baggerly, KA ;
Pentz, RD ;
Do, KA ;
Logothetis, CJ ;
Pasqualini, R .
NATURE MEDICINE, 2002, 8 (02) :121-127
[6]   STUDIES OF VIRUS STRUCTURE BY LASER RAMAN-SPECTROSCOPY .34. RAMAN-SPECTROSCOPY OF FILAMENTOUS BACTERIOPHAGE-FF (FD, M13, F1) INCORPORATING SPECIFICALLY-DEUTERATED ALANINE AND TRYPTOPHAN SIDE-CHAINS - ASSIGNMENTS AND STRUCTURAL INTERPRETATION [J].
AUBREY, KL ;
THOMAS, GJ .
BIOPHYSICAL JOURNAL, 1991, 60 (06) :1337-1349
[7]   MOLECULAR FRACTAL SURFACES [J].
AVNIR, D ;
FARIN, D ;
PFEIFER, P .
NATURE, 1984, 308 (5956) :261-263
[8]   Synthesis of inorganic fullerene-like molecules [J].
Bai, JF ;
Virovets, AV ;
Scheer, M .
SCIENCE, 2003, 300 (5620) :781-783
[9]  
Barbas C. F., 2001, PHAGE DISPLAY LAB MA
[10]   Surface-enhanced Raman spectroscopy studies on the interaction of imidazole with a silver electrode in acetonitrile solution [J].
Cao, PG ;
Gu, RA ;
Tian, ZQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :769-777