It is shown that the electromagnetic (EM) spectrum is characterized by strong amplitude-modulated transmitters operating in the target bandwidth of transient electromagnetic (TEM) measurements. As these transmitters cause significant noise in TEM soundings, it is mandatory to band-limit the input signals to improve the signal-to-noise ratio and thereby the depth of exploration. Band-limitation will distort the TEM responses, which leads to erroneous inversion results if the applied low-pass filters are not accounted for in the inversion scheme. We incorporate the low-pass filters in the inversion scheme and test the inversion approach on theoretical and field data. Inversion of band-limited theoretical responses results in recovery of erroneous resistivity models if the filters are not included in the inversion scheme. By contrast, inversion of band-limited theoretical and field data, for which the applied low-pass filters are included in the inversion scheme, leads to recovery of similar resistivity models, independent of the applied cut-off frequencies.; It is shown that the electromagnetic (EM) spectrum is characterized by strong amplitude-modulated transmitters operating in the target bandwidth of transient electromagnetic (TEM) measurements. As these transmitters cause significant noise in TEM soundings, it is mandatory to band-limit the input signals to improve the signal-to-noise ratio and thereby the depth of exploration. Band-limitation will distort the TEM responses, which leads to erroneous inversion results if the applied low-pass filters are not accounted for in the inversion scheme. We incorporate the low-pass filters in the inversion scheme and test the inversion approach on theoretical and field data. Inversion of band-limited theoretical responses results in recovery of erroneous resistivity models if the filters are not included in the inversion scheme. By contrast, inversion of band-limited theoretical and field data, for which the applied low-pass filters are included in the inversion scheme, leads to recovery of similar resistivity models, independent of the applied cut-off frequencies.