Maximum likelihood estimation methods for multispectral random field image models

被引:18
作者
Bennett, J [1 ]
Khotanzad, A [1 ]
机构
[1] So Methodist Univ, Dept Elect Engn, Dallas, TX 75275 USA
关键词
maximum likelihood estimation; multispectral image models; color texture models; multispectral random fields; multispectral autoregressive models; multispectral Markov models;
D O I
10.1109/34.771322
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work considers the problem of estimating parameters of multispectral random field (RF) image models using maximum likelihood (ML) methods. For images with an assumed Gaussian distribution. analytical results are developed for multispectral simultaneous autoregressive (MSAR) and Markov random field (MMRF) models which lead to practical procedures for calculating ML estimates. Although previous work has provided least squares methods for parameter estimation, the superiority of the ML method is evidenced by experimental results provided in this work. The effectiveness of multispectral RF models using ML estimates in modeling color texture images is also demonstrated.
引用
收藏
页码:537 / 543
页数:7
相关论文
共 16 条
[1]   Multispectral random field models for synthesis and analysis of color images [J].
Bennett, J ;
Khotanzad, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) :327-332
[2]  
BENNETT J, 1996, P IEEE INT C IM PROC, V3, P991
[3]  
BENNETT JW, 1997, THESIS SO METH U DAL
[4]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[5]   TEXTURE SYNTHESIS AND COMPRESSION USING GAUSSIAN-MARKOV RANDOM FIELD MODELS [J].
CHELLAPPA, R ;
CHATTERJEE, S ;
BAGDAZIAN, R .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (02) :298-303
[6]  
GAGALOWICZ A, 1986, P INT C PATT REC PAR, P412
[7]  
GONZALEZ R, 1992, DIGITAL IMAGE PROCES, P261
[8]  
JACOBS DAH, 1977, STATE ART NUMERICAL, pCH3
[9]  
Kashyap R. L., 1980, Proceedings of the 5th International Conference on Pattern Recognition, P1103
[10]   ESTIMATION AND CHOICE OF NEIGHBORS IN SPATIAL-INTERACTION MODELS OF IMAGES [J].
KASHYAP, RL ;
CHELLAPPA, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (01) :60-72