Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems

被引:207
作者
Huenneke, LF [1 ]
Anderson, JP
Remmenga, M
Schlesinger, WH
机构
[1] New Mexico State Univ, Dept Biol, Las Cruces, NM 88003 USA
[2] New Mexico State Univ, Univ Stat Ctr, Las Cruces, NM 88003 USA
[3] Duke Univ, Dept Bot, Durham, NC 27708 USA
关键词
Chihuahuan desert; desertification; Jornada LTER; Larrea tridentata; net primary productivity; Prosopis glandulosa;
D O I
10.1046/j.1365-2486.2002.00473.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The Chihuahuan desert of New Mexico, USA, has changed in historical times from semiarid grassland to desert shrublands dominated by Larrea tridentata and Prosopis glandulosa . Similar displacement of perennial grasslands by shrubs typifies desertification in many regions. Such structural vegetation change could alter average values of net primary productivity, as well as spatial and temporal patterns of production. We investigated patterns of aboveground plant biomass and net primary production in five ecosystem types of the Jornada Basin Long-Term Ecological Research (LTER) site. Comparisons of shrub-dominated desertified systems and remnant grass-dominated systems allowed us to test the prediction that shrublands are more heterogeneous spatially, but less variable over time, than grasslands. We measured aboveground plant biomass and aboveground net primary productivity (ANPP) by species, three times per year for 10 years, in 15 sites of five ecosystem types (three each in Larrea shrubland, Bouteloua eriopoda grassland, Prosopis dune systems, Flourensia cernua alluvial flats, and grass-dominated dry lakes or playas). Spatial heterogeneity of biomass at the scale of our measurements was significantly greater in shrub-dominated systems than in grass-dominated vegetation. ANPP was homogeneous across space in grass-dominated systems, and in most growing seasons was significantly more patchy in shrub vegetation. Substantial interannual variability in ANPP complicates comparison of mean values across ecosystem types, but grasslands tended to support higher ANPP values than did shrub-dominated systems. There were significant interactions between ecosystem type and season. Grasslands demonstrated higher interannual variation than did shrub systems. Desertification has apparently altered the seasonality of productivity in these systems; grasslands were dominated by summer growth, while sites dominated by Larrea or Prosopis tended to have higher spring ANPP. Production was frequently uncorrelated across sites of an ecosystem type, suggesting that factors other than season, regional climate, or dominant vegetation may be significant determinants of actual NPP.
引用
收藏
页码:247 / 264
页数:18
相关论文
共 47 条
[1]   Ecosystem responses to changes in plant functional type composition: An example from the Patagonian steppe [J].
Aguiar, MR ;
Paruelo, JM ;
Sala, OE ;
Lauenroth, WK .
JOURNAL OF VEGETATION SCIENCE, 1996, 7 (03) :381-390
[2]  
ALLRED KW, 1993, FIELD GUIDE GRASSES
[3]  
[Anonymous], USDA TECHNICAL B
[4]  
BRIGGS JM, 1989, HOLARCTIC ECOL, V12, P130
[5]   Reorganization of an arid ecosystem in response to recent climate change [J].
Brown, JH ;
Valone, TJ ;
Curtin, CG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (18) :9729-9733
[6]   VEGETATIONAL CHANGES ON A SEMIDESERT GRASSLAND RANGE FROM 1858 TO 1963 [J].
BUFFINGT.LC ;
HERBEL, CH .
ECOLOGICAL MONOGRAPHS, 1965, 35 (02) :139-&
[7]  
Correll D. S., 1970, Manual of vascular plants of Texas
[8]   Structure and function of C-3 and C-4 Chihuahuan Desert plant communities. Energy balance components [J].
Dugas, WA ;
Hicks, RA ;
Gibbens, RP .
JOURNAL OF ARID ENVIRONMENTS, 1996, 34 (01) :63-79
[9]  
EVENARI M, 1985, ECOSYSTEMS WORLD A, V12
[10]   Perspectives on desertification: south-western United States [J].
Fredrickson, E ;
Havstad, KM ;
Estell, R .
JOURNAL OF ARID ENVIRONMENTS, 1998, 39 (02) :191-207