Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing

被引:391
作者
Hopf, Thomas A. [1 ,2 ]
Colwell, Lucy J. [3 ]
Sheridan, Robert [4 ]
Rost, Burkhard [2 ]
Sander, Chris [4 ]
Marks, Debora S. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[2] Tech Univ Munich, Dept Informat, D-85748 Garching, Germany
[3] MRC, Mol Biol Lab, Cambridge CB2 0QH, England
[4] Mem Sloan Kettering Canc Ctr, Computat Biol Ctr, New York, NY 10065 USA
基金
英国工程与自然科学研究理事会;
关键词
CRYSTAL-STRUCTURE; ABC TRANSPORTER; GLYCEROL-3-PHOSPHATE TRANSPORTER; RESIDUE CONTACTS; PREDICTION; MUTATION; CHANNEL; CRYSTALLOGRAPHY; IDENTIFICATION; ARCHITECTURE;
D O I
10.1016/j.cell.2012.04.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We show that amino acid covariation in proteins, extracted from the evolutionary sequence record, can be used to fold transmembrane proteins. We use this technique to predict previously unknown 3D structures for 11 transmembrane proteins (with up to 14 helices) from their sequences alone. The prediction method (EVfold_membrane) applies a maximum entropy approach to infer evolutionary covariation in pairs of sequence positions within a protein family and then generates all-atom models with the derived pairwise distance constraints. We benchmark the approach with blinded de novo computation of known transmembrane protein structures from 23 families, demonstrating unprecedented accuracy of the method for large transmembrane proteins. We show how the method can predict oligomerization, functional sites, and conformational changes in transmembrane proteins. With the rapid rise in large-scale sequencing, more accurate and more comprehensive information on evolutionary constraints can be decoded from genetic variation, greatly expanding the repertoire of transmembrane proteins amenable to modeling by this method.
引用
收藏
页码:1607 / 1621
页数:15
相关论文
共 76 条
[1]   Recessive Mutations in ELOVL4 Cause Ichthyosis, Intellectual Disability, and Spastic Quadriplegia [J].
Aldahmesh, Mohammed A. ;
Mohamed, Jawahir Y. ;
Alkuraya, Hisham S. ;
Verma, Ishwar C. ;
Puri, Ratna D. ;
Alaiya, Ayodele A. ;
Rizzo, William B. ;
Alkuraya, Fowzan S. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (06) :745-750
[2]  
[Anonymous], NUCL ACIDS RES
[3]  
[Anonymous], CORRELATED MUTATIONS
[4]   Properties and identification of human protein drug targets [J].
Bakheet, Tala M. ;
Doig, Andrew J. .
BIOINFORMATICS, 2009, 25 (04) :451-457
[5]   Prediction of membrane protein structures with complex topologies using limited constraints [J].
Barth, P. ;
Wallner, B. ;
Baker, D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (05) :1409-1414
[6]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[7]   Structural perspectives on secondary active transporters [J].
Boudker, Olga ;
Verdon, Gregory .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2010, 31 (09) :418-426
[8]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[9]   Version 1.2 of the Crystallography and NMR system [J].
Brunger, Axel T. .
NATURE PROTOCOLS, 2007, 2 (11) :2728-2733
[10]   Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments [J].
Burger, Lukas ;
van Nimwegen, Erik .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (01)