Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures

被引:296
作者
Ferrera, M. [1 ]
Razzari, L. [1 ,2 ]
Duchesne, D. [1 ]
Morandotti, R. [1 ]
Yang, Z. [3 ,4 ]
Liscidini, M. [3 ,4 ]
Sipe, J. E. [3 ,4 ]
Chu, S. [5 ]
Little, B. E. [5 ]
Moss, D. J. [1 ,6 ]
机构
[1] INRS EMT, Varennes, PQ J3X 1S2, Canada
[2] Univ Pavia, Dipartimento Elettron, I-27100 Pavia, Italy
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[4] Univ Toronto, Inst Opt Sci, Toronto, ON M5S 1A7, Canada
[5] Infinera Corp, Annapolis, MD USA
[6] Univ Sydney, Sch Phys, CUDOS, Sydney, NSW 2006, Australia
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
D O I
10.1038/nphoton.2008.228
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonic integrated circuits are a key component(1) of future telecommunication networks, where demands for greater bandwidth, network flexibility, and low energy consumption and cost must all be met. The quest for all-optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses(2) and semiconductors, such as silicon(3) and AlGaAs (ref. 4). However, issues such as immature fabrication technology for chalcogenide glass and high linear and nonlinear losses for semiconductors motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light. We demonstrate four-wave mixing, with low (5 mW) continuous-wave pump power at lambda = 1,550 nm, in high-index, doped silica glass ring resonators(5). The low loss, design flexibility and manufacturability of our device are important attributes for low-cost, high-performance, nonlinear all-optical photonic integrated circuits.
引用
收藏
页码:737 / 740
页数:4
相关论文
共 30 条
[1]   Wavelength conversion in GaAs micro-ring resonators [J].
Absil, PP ;
Hryniewicz, JV ;
Little, BE ;
Cho, PS ;
Wilson, RA ;
Joneckis, LG ;
Ho, PT .
OPTICS LETTERS, 2000, 25 (08) :554-556
[2]   The nonlinear optical properties of AlGaAs at the half band gap [J].
Aitchison, JS ;
Hutchings, DC ;
Kang, JU ;
Stegeman, GI ;
Villeneuve, A .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (03) :341-348
[3]   Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching [J].
Asobe, M .
OPTICAL FIBER TECHNOLOGY, 1997, 3 (02) :142-148
[4]   Visible continuous emission from a silica microphotonic device by third-harmonic generation [J].
Carmon, Tal ;
Vahala, Kerry J. .
NATURE PHYSICS, 2007, 3 (06) :430-435
[5]   Third-order nonlinearities in silicon at telecom wavelengths [J].
Dinu, M ;
Quochi, F ;
Garcia, H .
APPLIED PHYSICS LETTERS, 2003, 82 (18) :2954-2956
[6]   Advances in silica planar lightwave circuits [J].
Doerr, Christopher Richard ;
Okamoto, Katsunari .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) :4763-4789
[7]  
DUCHESNE D, 2008, IEEE OSA C LAS EL OP
[8]  
EGGLETON BJ, 2008, NONLINEAR OPTICS COM, pCH20
[9]   Broad-band optical parametric gain on a silicon photonic chip [J].
Foster, Mark A. ;
Turner, Amy C. ;
Sharping, Jay E. ;
Schmidt, Bradley S. ;
Lipson, Michal ;
Gaeta, Alexander L. .
NATURE, 2006, 441 (7096) :960-963
[10]   Four-wave mixing in silicon wire waveguides [J].
Fukuda, H ;
Yamada, K ;
Shoji, T ;
Takahashi, M ;
Tsuchizawa, T ;
Watanabe, T ;
Takahashi, J ;
Itabashi, S .
OPTICS EXPRESS, 2005, 13 (12) :4629-4637