A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies

被引:104
作者
Helmich, Benjamin [1 ]
Haettig, Christof [1 ]
机构
[1] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44801 Bochum, Germany
关键词
ELECTRON CORRELATION METHODS; DENSITY-FUNCTIONAL THEORY; ZETA VALENCE QUALITY; AUXILIARY BASIS-SETS; GAUSSIAN-BASIS SETS; EXCITED-STATES; CONFIGURATION-INTERACTION; PERTURBATION-THEORY; AB-INITIO; LOCAL TREATMENT;
D O I
10.1063/1.4819071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate how to extend the pair natural orbital (PNO) methodology for excited states, presented in a previous work for the perturbative doubles correction to configuration interaction singles (CIS(D)), to iterative coupled cluster methods such as the approximate singles and doubles model CC2. The original O(N-5) scaling of the PNO construction is reduced by using orbital-specific virtuals (OSVs) as an intermediate step without spoiling the initial accuracy of the PNO method. Furthermore, a slower error convergence for charge-transfer states is analyzed and resolved by a numerical Laplace transformation during the PNO construction, so that an equally accurate treatment of local and charge-transfer excitations is achieved. With state-specific truncated PNO expansions, the eigenvalue problem is solved by combining the Davidson algorithm with deflation to project out roots that have already been determined and an automated refresh with a generation of new PNOs to achieve self-consistency of the PNO space. For a large test set, we found that truncation errors for PNO-CC2 excitation energies are only slightly larger than for PNO-CIS(D). The computational efficiency of PNO-CC2 is demonstrated for a large organic dye, where a reduction of the doubles space by a factor of more than 1000 is obtained compared to the canonical calculation. A compression of the doubles space by a factor 30 is achieved by a unified OSV space only. Moreover, calculations with the still preliminary PNO-CC2 implementation on a series of glycine oligomers revealed an early break even point with a canonical RI-CC2 implementation between 100 and 300 basis functions. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 75 条
[1]   PNO-CI (PAIR NATURAL ORBITAL CONFIGURATION INTERACTION) AND CEPA-PNO (COUPLED ELECTRON PAIR APPROXIMATION WITH PAIR NATURAL ORBITALS) CALCULATIONS OF MOLECULAR SYSTEMS .1. OUTLINE OF METHOD FOR CLOSED-SHELL STATES [J].
AHLRICHS, R ;
LISCHKA, H ;
STAEMMLER, V ;
KUTZELNIGG, W .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (04) :1225-1234
[2]   DIRECT DETERMINATION OF PAIR NATURAL ORBITALS - NEW METHOD TO SOLVE MULTI-CONFIGURATION HARTREE-FOCK PROBLEM FOR 2-ELECTRON WAVE-FUNCTIONS [J].
AHLRICHS, R ;
DRIESSLER, F .
THEORETICA CHIMICA ACTA, 1975, 36 (04) :275-287
[3]   ELIMINATION OF ENERGY DENOMINATORS IN MOLLER-PLESSET PERTURBATION-THEORY BY A LAPLACE TRANSFORM APPROACH [J].
ALMLOF, J .
CHEMICAL PHYSICS LETTERS, 1991, 181 (04) :319-320
[4]   2ND-ORDER PERTURBATION-THEORY WITH A COMPLETE ACTIVE SPACE SELF-CONSISTENT FIELD REFERENCE FUNCTION [J].
ANDERSSON, K ;
MALMQVIST, PA ;
ROOS, BO .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (02) :1218-1226
[5]  
[Anonymous], 2013, TURBOMOLE DEV VERSIO
[6]  
[Anonymous], 2012, TURBOMOLE V6 4 2012
[7]   THE 2ND-ORDER APPROXIMATE COUPLED-CLUSTER SINGLES AND DOUBLES MODEL CC2 [J].
CHRISTIANSEN, O ;
KOCH, H ;
JORGENSEN, P .
CHEMICAL PHYSICS LETTERS, 1995, 243 (5-6) :409-418
[8]   RESPONSE FUNCTIONS IN THE CC3 ITERATIVE TRIPLE EXCITATION MODEL [J].
CHRISTIANSEN, O ;
KOCH, H ;
JORGENSEN, P .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (17) :7429-7441
[9]   ITERATIVE CALCULATION OF A FEW OF LOWEST EIGENVALUES AND CORRESPONDING EIGENVECTORS OF LARGE REAL-SYMMETRIC MATRICES [J].
DAVIDSON, ER .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :87-94
[10]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278