Methods for dealing with time-dependent confounding

被引:260
作者
Daniel, R. M. [1 ]
Cousens, S. N. [1 ]
De Stavola, B. L. [1 ]
Kenward, M. G. [1 ]
Sterne, J. A. C. [2 ]
机构
[1] Univ London London Sch Hyg & Trop Med, Ctr Stat Methodol, London WC1E 7HT, England
[2] Univ Bristol, Dept Social Med, Bristol, Avon, England
基金
英国医学研究理事会;
关键词
time-dependent confounding; g-computation formula; inverse probability weighting; g-estimation; marginal structural model; structural nested model; MARGINAL STRUCTURAL MODELS; DOUBLY ROBUST ESTIMATION; CORONARY-HEART-DISEASE; CAUSAL INFERENCE; G-COMPUTATION; RISK-FACTORS; MORTALITY; SELECTION; SURVIVAL;
D O I
10.1002/sim.5686
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Longitudinal studies, where data are repeatedly collected on subjects over a period, are common in medical research. When estimating the effect of a time-varying treatment or exposure on an outcome of interest measured at a later time, standard methods fail to give consistent estimators in the presence of time-varying confounders if those confounders are themselves affected by the treatment. Robins and colleagues have proposed several alternative methods that, provided certain assumptions hold, avoid the problems associated with standard approaches. They include the g-computation formula, inverse probability weighted estimation of marginal structural models and g-estimation of structural nested models. In this tutorial, we give a description of each of these methods, exploring the links and differences between them and the reasons for choosing one over the others in different settings. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1584 / 1618
页数:35
相关论文
共 47 条
  • [1] [Anonymous], INT J BIOSTAT
  • [2] [Anonymous], SEMIPARAMETRIC THEOR
  • [3] Doubly robust estimation in missing data and causal inference models
    Bang, H
    [J]. BIOMETRICS, 2005, 61 (04) : 962 - 972
  • [4] When to Start Treatment? A Systematic Approach to the Comparison of Dynamic Regimes Using Observational Data
    Cain, Lauren E.
    Robins, James M.
    Lanoy, Emilie
    Logan, Roger
    Costagliola, Dominique
    Hernan, Miguel A.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02)
  • [5] Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data
    Cao, Weihua
    Tsiatis, Anastasios A.
    Davidian, Marie
    [J]. BIOMETRIKA, 2009, 96 (03) : 723 - 734
  • [6] Casella G., 2002, Statistical inference, V2nd edition
  • [7] Constructing inverse probability weights for marginal structural models
    Cole, Stephen R.
    Hernan, Miguel A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 168 (06) : 656 - 664
  • [8] gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula
    Daniel, Rhian M.
    De Stavola, Bianca L.
    Cousens, Simon N.
    [J]. STATA JOURNAL, 2011, 11 (04) : 479 - 517
  • [9] Controlling for time-dependent confounding using marginal structural models
    Fewell, Zoe
    Hernan, Miguel A.
    Wolfe, Frederick
    Tilling, Kate
    Choi, Hyon
    Sterne, Jonathan A. C.
    [J]. STATA JOURNAL, 2004, 4 (04) : 402 - 420
  • [10] Estimation of controlled direct effects
    Goetgeluk, Sylvie
    Vansteelandt, Stijn
    Goetghebeur, Els
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 1049 - 1066