Finite element modelling of dielectric elastomer minimum energy structures

被引:92
作者
O'Brien, Benjamin [1 ]
McKay, Thomas [1 ]
Calius, Emilio [2 ]
Xie, Shane [3 ]
Anderson, Iain [1 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Auckland 1, New Zealand
[2] Ind Res Ltd, Auckland 1140, New Zealand
[3] Univ Auckland, Dept Mech Engn, Sch Engn, Auckland 1142, New Zealand
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2009年 / 94卷 / 03期
关键词
ACTUATORS;
D O I
10.1007/s00339-008-4946-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an experimentally validated finite element model suitable for simulating the quasi-static behaviour of Dielectric Elastomer Minimum Energy Structure(s) (DEMES). A DEMES consists of a pre-stretched Dielectric Elastomer Actuator (DEA) adhered to a thin, flexible frame. The tension in the stretched membrane causes the frame to curl up, and when a voltage is applied, the frame returns to its initial planar state thus forming a useful bending actuator. The simulation method presented here incorporates a novel strain energy function suitable for simulating general DEA actuator elements. When compared against blocked force data from our previous work, the new model provides a good fit with an order of magnitude reduction in computational time. Furthermore, the model accurately matched experimental data on the free displacement of DEMES formed with non-equibiaxially pre-stretched VHB4905 membranes driven by 2500 V. Non-equibiaxially pre-stretching the membranes allowed control of effective frame stiffness and bending moment, this was exploited by using the model to optimise stroke at 2500 V in a hypothetical case study. Dielectric constant measurements for non-equibiaxially stretched VHB4905 are also presented.
引用
收藏
页码:507 / 514
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 2001, DIELECTRIC ELASTOMER
[2]   A nonlinear model for dielectric elastomer membranes [J].
Goulbourne, N ;
Mockensturm, E ;
Frecker, M .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2005, 72 (06) :899-906
[3]  
HEYDT R, 2006, P SPIE
[4]   Self-organized minimum-energy structures for dielectric elastomer actuators [J].
Kofod, G. ;
Paajanen, M. ;
Bauer, S. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (02) :141-143
[5]  
KOFOD G, 2007, APPL PHYS LETT, V90
[6]  
KOFOD G, 2006, P SPIE
[7]   Artificial muscle technology: Physical principles and naval prospects [J].
Madden, JDW ;
Vandesteeg, NA ;
Anquetil, PA ;
Madden, PGA ;
Takshi, A ;
Pytel, RZ ;
Lafontaine, SR ;
Wieringa, PA ;
Hunter, IW .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2004, 29 (03) :706-728
[8]  
OBRIEN B, 2008, P SPIE
[9]   High-speed electrically actuated elastomers with strain greater than 100% [J].
Pelrine, R ;
Kornbluh, R ;
Pei, QB ;
Joseph, J .
SCIENCE, 2000, 287 (5454) :836-839
[10]   High-field deformation of elastomeric dielectrics for actuators [J].
Pelrine, R ;
Kornbluh, R ;
Joseph, J ;
Heydt, R ;
Pei, QB ;
Chiba, S .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2000, 11 (02) :89-100