Synthetic (+/-)-epiboxidine (exo-2-(3-methyl-5-isoxazolyl)-7-azabicyclo[2.2.1]heptane) is a methylisoxazole analog of the alkaloid epibatidine, itself a potent nicotinic receptor agonist with antinociceptive activity. Epiboxidine contains a methylisoxazolyl ring replacing the chloropyridinyl ring of epibatidine. Thus, it is also an analog of another nicotinic receptor agonist, ABT 418 ((S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole), in which the pyridinyl ring of nicotine has been replaced by the methylisoxazolyl ring. Epiboxidine was about 10-fold less potent than epibatidine and about 17-fold more potent than ABT 418 in inhibiting [H-3]nicotine binding to alpha(4) beta(2) nicotinic receptors in rat cerebral cortical membranes. In cultured cells with functional ion flux assays, epiboxidine was nearly equipotent to epibatidine and 200-fold more potent than ABT 418 alpha(3) beta(4(5)) nicotinic receptors in PCl2 cells. Epiboxidine was about 5-fold less potent than epibatidine and about 30-fold more potent than ABT 418 in TE671 cells with alpha(1) beta(1) gamma delta nicotinic receptors. In a hot-plate antinociceptive assay with mice, epiboxidine was about 10-fold less potent than epibatidine. However, epiboxidine was also much less toxic than epibatidine in mice.