Projective ART for clustering data sets in high dimensional spaces

被引:53
作者
Cao, YQ [1 ]
Wu, JH [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1PE, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
neural networks; data mining; projected clustering; adaptive resonance theory; learning; pattern recognition; ART1; ART2;
D O I
10.1016/S0893-6080(01)00108-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new neural network architecture (PART) and the resulting algorithm are proposed to find projected clusters for data sets in high dimensional spaces. The architecture is based on the well known ART developed by Carpenter and Grossberg, and a major modification (selective output signaling) is provided in order to deal with the inherent sparsity in the full space of the data points from many data-mining applications. This selective output signaling mechanism allows the signal generated in a node in the input layer to be transmitted to a node in the clustering layer only when the signal is similar to the top-down weight between the two nodes and, hence, PART focuses on dimensions where information can be found. Illustrative examples are provided, simulations on high dimensional synthetic data and comparisons with Fuzzy ART module and PROCLUS are also reported. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:105 / 120
页数:16
相关论文
共 11 条
[1]  
Aggarwal CC, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P61, DOI 10.1145/304181.304188
[2]   ART-3 - HIERARCHICAL SEARCH USING CHEMICAL TRANSMITTERS IN SELF-ORGANIZING PATTERN-RECOGNITION ARCHITECTURES [J].
CARPENTER, GA ;
GROSSBERG, S .
NEURAL NETWORKS, 1990, 3 (02) :129-152
[3]   ART 2-A - AN ADAPTIVE RESONANCE ALGORITHM FOR RAPID CATEGORY LEARNING AND RECOGNITION [J].
CARPENTER, GA ;
GROSSBERG, S ;
ROSEN, DB .
NEURAL NETWORKS, 1991, 4 (04) :493-504
[4]   FUZZY ART - FAST STABLE LEARNING AND CATEGORIZATION OF ANALOG PATTERNS BY AN ADAPTIVE RESONANCE SYSTEM [J].
CARPENTER, GA ;
GROSSBERG, S ;
ROSEN, DB .
NEURAL NETWORKS, 1991, 4 (06) :759-771
[5]   FUZZY ARTMAP - A NEURAL NETWORK ARCHITECTURE FOR INCREMENTAL SUPERVISED LEARNING OF ANALOG MULTIDIMENSIONAL MAPS [J].
CARPENTER, GA ;
GROSSBERG, S ;
MARKUZON, N ;
REYNOLDS, JH ;
ROSEN, DB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05) :698-713
[6]   ARTMAP - SUPERVISED REAL-TIME LEARNING AND CLASSIFICATION OF NONSTATIONARY DATA BY A SELF-ORGANIZING NEURAL NETWORK [J].
CARPENTER, GA ;
GROSSBERG, S ;
REYNOLDS, JH .
NEURAL NETWORKS, 1991, 4 (05) :565-588
[7]   A MASSIVELY PARALLEL ARCHITECTURE FOR A SELF-ORGANIZING NEURAL PATTERN-RECOGNITION MACHINE [J].
CARPENTER, GA ;
GROSSBERG, S .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1987, 37 (01) :54-115
[8]   ART-2 - SELF-ORGANIZATION OF STABLE CATEGORY RECOGNITION CODES FOR ANALOG INPUT PATTERNS [J].
CARPENTER, GA ;
GROSSBERG, S .
APPLIED OPTICS, 1987, 26 (23) :4919-4930
[9]  
Dayhoff J. E., 1990, Neural network architectures: an introduction
[10]  
Fausett L. V., 1993, FUNDAMENTALS NEURAL