ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model

被引:54
作者
Scafetta, Nicola [1 ]
Willson, Richard C. [2 ]
机构
[1] Duke Univ, Dept Phys, Durham, NC 27708 USA
[2] ACRIM, Coronado, CA 92118 USA
基金
美国国家航空航天局;
关键词
SOLAR IRRADIANCE TREND; CYCLES;
D O I
10.1029/2008GL036307
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The ACRIM-gap (1989.5-1991.75) continuity dilemma for satellite TSI observations is resolved by bridging the satellite TSI monitoring gap between ACRIM1 and ACRIM2 results with TSI derived from Krivova et al.'s (2007) proxy model based on variations of the surface distribution of solar magnetic flux. 'Mixed' versions of ACRIM and PMOD TSI composites are constructed with their composites' original values except for the ACRIM gap, where Krivova modeled TSI is used to connect ACRIM1 and ACRIM2 results. Both 'mixed' composites demonstrate a significant TSI increase of 0.033%/decade between the solar activity minima of 1986 and 1996, comparable to the 0.037% found in the ACRIM composite. The finding supports the contention of Willson (1997) that the ERBS/ERBE results are flawed by uncorrected degradation during the ACRIM gap and refutes the Nimbus7/ERB ACRIM gap adjustment Frohlich and Lean (1998) employed in constructing the PMOD. Citation: Scafetta, N., and R. C. Willson (2009), ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model, Geophys. Res. Lett., 36, L05701, doi:10.1029/2008GL036307.
引用
收藏
页数:5
相关论文
共 14 条
[1]   Solar irradiance variability since 1978 -: Revision of the PMOD composite during solar cycle 21 [J].
Froehlich, C. .
SPACE SCIENCE REVIEWS, 2006, 125 (1-4) :53-65
[2]  
Fröhlich C, 2004, GEOPH MONOG SERIES, V141, P97
[3]   The Sun's total irradiance: Cycles, trends and related climate change uncertainties since 1976 [J].
Frohlich, C ;
Lean, J .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (23) :4377-4380
[4]   In-flight performance of the VIRGO solar irradiance instruments on SOHO [J].
Frohlich, C ;
Crommelynck, DA ;
Wehrli, C ;
Anklin, M ;
Dewitte, S ;
Fichot, A ;
Finsterle, W ;
Jimenez, A ;
Chevalier, A ;
Roth, H .
SOLAR PHYSICS, 1997, 175 (02) :267-286
[5]   THE NIMBUS 7 SOLAR TOTAL IRRADIANCE - A NEW ALGORITHM FOR ITS DERIVATION [J].
HOYT, DV ;
KYLE, HL ;
HICKEY, JR ;
MASCHHOFF, RH .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1992, 97 (A1) :51-63
[6]   The Total Irradiance Monitor (TIM): Science results [J].
Kopp, G ;
Lawrence, G ;
Rottman, G .
SOLAR PHYSICS, 2005, 230 (1-2) :129-139
[7]   Reconstruction of solar total irradiance since 1700 from the surface magnetic flux [J].
Krivova, N. A. ;
Balmaceda, L. ;
Solanki, S. K. .
ASTRONOMY & ASTROPHYSICS, 2007, 467 (01) :335-346
[8]   LONG-TERM TOTAL SOLAR IRRADIANCE VARIABILITY DURING SUNSPOT CYCLE-22 [J].
LEE, RB ;
GIBSON, MA ;
WILSON, RS ;
THOMAS, S .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1995, 100 (A2) :1667-1675
[9]   Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600 [J].
Scafetta, N. ;
West, B. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D24)
[10]   Is climate sensitive to solar variability? [J].
Scafetta, Nicola ;
West, Bruce J. .
PHYSICS TODAY, 2008, 61 (03) :50-51