Strategies for engineering water-stress tolerance in plants

被引:722
作者
Bohnert, HJ
Jensen, RG
机构
[1] Department of Biochemistry, University of Arizona, Tucson, AZ 85721, Biosciences West
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-7799(96)80929-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Water deficit is the commonest environmental stress factor limiting plant productivity. The ability of plants to tolerate water deficit is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites and specific proteins that control ion and water flux, support scavenging of oxygen radicals, or may act as chaperones. The ability of plants to detoxify radicals under conditions of water deficit is probably the most critical requirement. Many stress-tolerant species accumulate methylated metabolites, which play a crucial dual role as osmoprotectants, and as radical scavengers. Their synthesis is correlated with stress-induced enhancement of photorespiration. However, transfer of individual genes from tolerant plants only confers marginally increased water-stress tolerance to stress-sensitive species: tolerance engineering will probably require the transfer of multiple genes.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 52 条
[1]   The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter [J].
ADAMS, WW ;
DEMMIGADAMS, B .
PLANT CELL AND ENVIRONMENT, 1995, 18 (02) :117-127
[2]   DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS [J].
ALLEN, RD .
PLANT PHYSIOLOGY, 1995, 107 (04) :1049-1054
[3]  
Asada K., 1994, Causes of photooxidative stress and amelioration of defense systems in plants., P77
[4]   BREEDING FOR SALINITY TOLERANCE IN PLANTS [J].
ASHRAF, M .
CRITICAL REVIEWS IN PLANT SCIENCES, 1994, 13 (01) :17-42
[5]   SIGNAL-TRANSDUCTION IN GUARD-CELLS [J].
ASSMANN, SM .
ANNUAL REVIEW OF CELL BIOLOGY, 1993, 9 :345-375
[6]   METABOLISM OF THE RAFFINOSE FAMILY OLIGOSACCHARIDES IN LEAVES OF AJUGA-REPTANS L - COLD-ACCLIMATION, TRANSLOCATION, AND SINK TO SOURCE TRANSITION - DISCOVERY OF CHAIN ELONGATION ENZYME [J].
BACHMANN, M ;
MATILE, P ;
KELLER, F .
PLANT PHYSIOLOGY, 1994, 105 (04) :1335-1345
[7]   TONOPLAST NA+/H+ ANTIPORT ACTIVITY AND ITS ENERGIZATION BY THE VACUOLAR H+-ATPASE IN THE HALOPHYTIC PLANT MESEMBRYANTHEMUM-CRYSTALLINUM L [J].
BARKLA, BJ ;
ZINGARELLI, L ;
BLUMWALD, E ;
SMITH, JAC .
PLANT PHYSIOLOGY, 1995, 109 (02) :549-556
[8]   APPROACHES TO IMPROVE STRESS TOLERANCE USING MOLECULAR-GENETICS [J].
BARTELS, D ;
NELSON, D .
PLANT CELL AND ENVIRONMENT, 1994, 17 (05) :659-667
[9]  
BASTA AS, 1994, STRESS INDUCED GENE
[10]   ADAPTATIONS TO ENVIRONMENTAL STRESSES [J].
BOHNERT, HJ ;
NELSON, DE ;
JENSEN, RG .
PLANT CELL, 1995, 7 (07) :1099-1111