A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid

被引:69
作者
Li, ZL [1 ]
Zhao, HK
Gao, HJ
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Engn Mech, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcph.1999.6249
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A numerical method for studying migration of voids driven by surface diffusion and electric current in a metal conducting line is developed. The mathematical model involves moving boundaries governed by a fourth order nonlinear partial differential equation which contains a nonlocal term corresponding to the electrical field and a nonlinear term corresponding to the curvature. Numerical challenges include efficient computation of the electrical field with sufficient accuracy to afford fourth order differentiation along the void boundary and to capture singularities arising in topological changes. We use the modified immersed interface method with a fixed Cartesian grid to solve for the electrical field, and the fast local level set method to update the position of moving voids, Numerical examples are performed to demonstrate the physical mechanisms by which voids interact under electromigration. (C) 1999 Academic Press.
引用
收藏
页码:281 / 304
页数:24
相关论文
共 22 条
[1]  
ADALSTEINSSON D, 1997, J COMPUT PHYS, V138
[2]   SINGULARITIES IN A MODIFIED KURAMOTO-SIVASHINSKY EQUATION DESCRIBING INTERFACE MOTION FOR PHASE-TRANSITION [J].
BERNOFF, AJ ;
BERTOZZI, AL .
PHYSICA D, 1995, 85 (03) :375-404
[3]  
BERNOFF AJ, 1998, AXISYMMETRIC SURFACE
[4]  
Cahn J. M., 1996, Euro. J. Appl. Math., V7, P287, DOI DOI 10.1017/S0956792500002369
[5]   OVERVIEW NO-113 - SURFACE MOTION BY SURFACE-DIFFUSION [J].
CAHN, JW ;
TAYLOR, JE .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04) :1045-1063
[6]   A simple level set method for solving Stefan problems [J].
Chen, S ;
Merriman, B ;
Osher, S ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) :8-29
[7]  
ELLIOTT CM, 1986, ARCH RATION MECH AN, V96, P339
[8]  
JAING G, 1998, 9729 UCLA CAM
[9]   Electromigration mechanisms in conductor lines: Void shape changes and slit-like failure [J].
Kraft, O ;
Arzt, E .
ACTA MATERIALIA, 1997, 45 (04) :1599-1611
[10]   THE IMMERSED INTERFACE METHOD FOR ELLIPTIC-EQUATIONS WITH DISCONTINUOUS COEFFICIENTS AND SINGULAR SOURCES [J].
LEVEQUE, RJ ;
LI, ZL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :1019-1044