Variational ansatz for PJ-symmetric quantum mechanics

被引:64
作者
Bender, CM [1 ]
Cooper, F
Meisinger, PN
Savage, VM
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA
[3] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
D O I
10.1016/S0375-9601(99)00468-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A variational calculation of the energy levels of the class of PJ-invariant quantum mechanical models described by the non-Hermitian Hamiltonian H = p(2) - (ix)(N) with N positive and x complex is presented. The energy levels are determined by finding the stationary points of the functional [H](a,b,c) = (integral(C)dx psi(x) H psi(x))/(integral(C)dx psi(2)(x)), where psi(x) = (ix)(c)exp(a(ix)(b)) is a three-parameter class of PJ-invariant trial wave functions. The integration contour C used to define [H](a,b,c) lies inside a wedge in the complex-x plane in which the wave function falls off exponentially at infinity. Rather than having a local minimum the functional has a saddle point in the three-parameter (a,b,c)-space. At this saddle point the numerical prediction for the ground-state energy is extremely accurate for a wide range of N. The methods of supersymmetric quantum mechanics are used to determine approximate wave functions and energy eigenvalues of the excited states of this class of non-Hermitian Hamiltonians. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:224 / 231
页数:8
相关论文
共 7 条
[1]  
BENDER CJ, UNPUB
[2]   Model of supersymmetric quantum field theory with broken parity symmetry [J].
Bender, CM ;
Milton, KA .
PHYSICAL REVIEW D, 1998, 57 (06) :3595-3608
[3]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[4]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[5]   SUSY-BASED VARIATIONAL METHOD FOR THE ANHARMONIC-OSCILLATOR [J].
COOPER, F ;
DAWSON, J ;
SHEPARD, H .
PHYSICS LETTERS A, 1994, 187 (02) :140-144
[6]  
Cooper F., 1995, Physics Reports, V251, P267, DOI 10.1016/0370-1573(94)00080-M
[7]   VARIATIONAL-METHODS VIA SUPERSYMMETRIC TECHNIQUES [J].
GOZZI, E ;
REUTER, M ;
THACKER, WD .
PHYSICS LETTERS A, 1993, 183 (01) :29-32