Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles

被引:701
作者
Nowak, AP
Breedveld, V
Pakstis, L
Ozbas, B
Pine, DJ
Pochan, D
Deming, TJ [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Chem, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[5] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[6] Univ Delaware, Delaware Biotechnol Inst, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/417424a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-based hydrogels are used for many applications, ranging from food and cosmetic thickeners to support matrices for drug delivery and tissue replacement(1-3). These materials are usually prepared using proteins extracted from natural sources, which can give rise to inconsistent properties unsuitable for medical applications(4). Recent developments have utilized recombinant DNA methods to prepare artificial protein hydrogels with specific association mechanisms and responsiveness to various stimuli(5,6). Here we synthesize diblock copolypeptide amphiphiles containing charged and hydrophobic segments. Dilute solutions of these copolypeptides would be expected to form micelles; instead, they form hydrogels that retain their mechanical strength up to temperatures of about 90 degreesC and recover rapidly after stress. The use of synthetic materials permits adjustment of copolymer chain length and composition, which we varied to study their effect on hydrogel formation and properties. We find that gelation depends not only on the amphiphilic nature of the polypeptides, but also on chain conformations-alpha-helix, beta-strand or random coil. Indeed, shape-specific supramolecular assembly is integral to the gelation process, and provides a new class of peptide-based hydrogels with potential for applications in biotechnology.
引用
收藏
页码:424 / 428
页数:6
相关论文
共 28 条
[1]  
Adler A J, 1973, Methods Enzymol, V27, P675
[2]   Block copolymer micelles: Viscoelasticity and interaction potential of soft spheres [J].
Buitenhuis, J ;
Forster, S .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (01) :262-272
[3]   Biomimetic synthesis of ordered silica structures mediated by block copolypeptides [J].
Cha, JN ;
Stucky, GD ;
Morse, DE ;
Deming, TJ .
NATURE, 2000, 403 (6767) :289-292
[4]  
CLARK AH, 1987, ADV POLYM SCI, V83, P57
[5]   Two-point microrheology of inhomogeneous soft materials [J].
Crocker, JC ;
Valentine, MT ;
Weeks, ER ;
Gisler, T ;
Kaplan, PD ;
Yodh, AG ;
Weitz, DA .
PHYSICAL REVIEW LETTERS, 2000, 85 (04) :888-891
[6]  
DAGANI R, 1997, CHEM ENG NEWS, V23, P26
[7]   Cobalt and iron initiators for the controlled polymerization of α-amino acid-N-carboxyanhydrides [J].
Deming, TJ .
MACROMOLECULES, 1999, 32 (13) :4500-4502
[8]   Facile synthesis of block copolypeptides of defined architecture [J].
Deming, TJ .
NATURE, 1997, 390 (6658) :386-389
[9]   Polymorphism and architectural crystal assembly of calcium carbonate in biologically inspired polymeric matrices [J].
Falini, G ;
Fermani, S ;
Gazzano, M ;
Ripamonti, A .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 2000, (21) :3983-3987
[10]   Polyelectrolyte micelles: Self-diffusion and electron microscopy studies [J].
Guenoun, P ;
Davis, HT ;
Doumaux, HA ;
Maldonado, A ;
Mays, JW ;
Talmon, Y ;
Taulier, N ;
Tirrell, M ;
Urbach, W ;
Zheng, Y .
LANGMUIR, 2000, 16 (10) :4436-4440