Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles

被引:243
作者
Wunderbaldinger, P [1 ]
Josephson, L [1 ]
Weissleder, R [1 ]
机构
[1] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Ctr Mol Imaging Res, Boston, MA USA
关键词
D O I
10.1021/bc015563u
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Superparamagnetic nanoparticles have a number of important biomedical applications, serving as MR contrast agents for imaging specific molecular targets, as reagents for cell labeling and cell tracking, and for the isolation of specific classes of cells. We have determined the physical and biological properties of MION-47 and amino-CLIO, nanoparticles which serve as precursors for the synthesis of targeted MR contrast agents, and Tat-CLIO, a nanoparticle used as a cell labeling reagent. Blood half-lives for MION-47 and amino-CLIO were 682 +/- 34 and 655 +/- 37 min, respectively. The attachment of 9.7 tat peptides per crystal to amino-CLIO resulted in a reduction in blood half-life to 47 +/- 6 min. MION-47, amino-CLIO, and Tat-CLIO were present in highest concentrations in liver and spleen and lymph nodes, where concentrations for all three nanoparticles ranged from 8.80 to 6.11% of injected dose per gram. Twenty-four hours after the intravenous injection of amino-CLIO, the nanoparticle was concentrated in cells surrounding hepatic blood vessels (endothelial and Kupffer cells), in a fashion similar to that obtained with other nanoparticle preparations. In contrast, Tat-CLIO was present as numerous discrete foci of intense fluorescence throughout the parenchyma. Using the peptide as a component of future nanoparticles, it might be possible to design sensors for the detection of macromolecules present in intracellular compartments.
引用
收藏
页码:264 / 268
页数:5
相关论文
共 24 条
[1]   Trojan peptides: the penetratin system for intracellular delivery [J].
Derossi, D ;
Chassaing, G ;
Prochiantz, A .
TRENDS IN CELL BIOLOGY, 1998, 8 (02) :84-87
[2]   Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles [J].
Dodd, CH ;
Hsu, HC ;
Chu, WJ ;
Yang, PG ;
Zhang, HG ;
Mountz, JD ;
Zinn, K ;
Forder, J ;
Josephson, L ;
Weissleder, R ;
Mountz, JM ;
Mountz, JD .
JOURNAL OF IMMUNOLOGICAL METHODS, 2001, 256 (1-2) :89-105
[3]  
EGUCHI A, 2001, J BIOL CHEM, V9, P9
[4]   TAT-MEDIATED DELIVERY OF HETEROLOGOUS PROTEINS INTO CELLS [J].
FAWELL, S ;
SEERY, J ;
DAIKH, Y ;
MOORE, C ;
CHEN, LL ;
PEPINSKY, B ;
BARSOUM, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (02) :664-668
[5]   Protein transduction: an alternative to genetic intervention? [J].
Ford, KG ;
Souberbiele, BE ;
Darling, D ;
Farzaneh, F .
GENE THERAPY, 2001, 8 (01) :1-4
[6]   Improvement of MRI probes to allow efficient detection of gene expression [J].
Högemann, D ;
Josephson, L ;
Weissleder, R ;
Basilion, JP .
BIOCONJUGATE CHEMISTRY, 2000, 11 (06) :941-946
[7]  
Josephson L, 2001, ANGEW CHEM INT EDIT, V40, P3204, DOI 10.1002/1521-3773(20010903)40:17<3204::AID-ANIE3204>3.0.CO
[8]  
2-H
[9]   High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates [J].
Josephson, L ;
Tung, CH ;
Moore, A ;
Weissleder, R .
BIOCONJUGATE CHEMISTRY, 1999, 10 (02) :186-191
[10]   SURFACE-PROPERTIES OF SUPERPARAMAGNETIC IRON-OXIDE MR CONTRAST AGENTS - FERUMOXIDES, FERUMOXTRAN, FERUMOXSIL [J].
JUNG, CW .
MAGNETIC RESONANCE IMAGING, 1995, 13 (05) :675-691