Enhanced function conferred on low-abundance chemoreceptor Trg by a methyltransferase-docking site

被引:56
作者
Feng, XH [1 ]
Lilly, AA [1 ]
Hazelbauer, GL [1 ]
机构
[1] Washington State Univ, Dept Biochem & Biophys, Pullman, WA 99164 USA
关键词
D O I
10.1128/JB.181.10.3164-3171.1999
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In Escherichia coli, high-abundance chemoreceptors are present in cellular amounts approximately 10-fold higher than those of low-abundance receptors. These two classes exhibit inherent differences in functional activity. As sole cellular chemoreceptors, high-abundance receptors are effective in methyl-accepting activity, in establishing a functional balance between the two directions of flagellar rotation, in timely adaptation, and in mediating efficient chemotaxis. Low-abundance receptors are not, even when their cellular content is increased. We found that the low-abundance receptor Trg acquired essential functional features of a high-abundance receptor by the addition of the final 19 residues of the high-abundance receptor Tsr. The carboxy terminus of this addition carried a methyltransferase-binding pentapeptide, NWETF, present in high-abundance receptors but absent in the low-abundance class. Provision of this docking site not only enhanced steady-state and adaptational methylation but also shifted the abnormal, counterclockwise bias of flagellar rotation toward a more normal rotational balance and vastly improved chemotaxis in spatial gradients. These improvements can be understood as the result of both enhanced kinase activation by the more methylated receptor and timely adaptation by more efficient methyl-accepting activity. We conclude that the crucial functional difference between the low-abundance receptor Trg and its high-abundance counterparts is the level of methyl-accepting activity conferred by the methyltransferase-docking site.
引用
收藏
页码:3164 / 3171
页数:8
相关论文
共 35 条
[1]   METHOD FOR MEASURING CHEMOTAXIS AND USE OF METHOD TO DETERMINE OPTIMUM CONDITIONS FOR CHEMOTAXIS BY ESCHERICHIA-COLI [J].
ADLER, J .
JOURNAL OF GENERAL MICROBIOLOGY, 1973, 74 (JAN) :77-91
[2]   Comparison in vitro of a high- and a low-abundance chemoreceptor of Escherichia coli:: Similar kinase activation but different methyl-accepting activities [J].
Barnakov, AN ;
Barnakova, LA ;
Hazelbauer, GL .
JOURNAL OF BACTERIOLOGY, 1998, 180 (24) :6713-6718
[3]   A signal transducer for aerotaxis in Escherichia coli [J].
Bibikov, SI ;
Biran, R ;
Rudd, KE ;
Parkinson, JS .
JOURNAL OF BACTERIOLOGY, 1997, 179 (12) :4075-4079
[4]   STRUCTURE OF THE TRG PROTEIN - HOMOLOGIES WITH AND DIFFERENCES FROM OTHER SENSORY TRANSDUCERS OF ESCHERICHIA-COLI [J].
BOLLINGER, J ;
PARK, C ;
HARAYAMA, S ;
HAZELBAUER, GL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (11) :3287-3291
[5]   ATTENUATION OF SENSORY RECEPTOR SIGNALING BY COVALENT MODIFICATION [J].
BORKOVICH, KA ;
ALEX, LA ;
SIMON, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (15) :6756-6760
[6]  
DUNTEN P, 1991, J BIOL CHEM, V266, P1491
[7]   MULTIPLE METHYLATION OF METHYL-ACCEPTING CHEMOTAXIS PROTEINS DURING ADAPTATION OF ESCHERICHIA-COLI TO CHEMICAL STIMULI [J].
ENGSTROM, P ;
HAZELBAUER, GL .
CELL, 1980, 20 (01) :165-171
[8]   The two-component signaling pathway of bacterial chemotaxis: A molecular view of signal transduction by receptors, kinases, and adaptation enzymes [J].
Falke, JJ ;
Bass, RB ;
Butler, SL ;
Chervitz, SA ;
Danielson, MA .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1997, 13 :457-512
[9]   High- and low-abundance chemoreceptors in Escherichia coli: Differential activities associated with closely related cytoplasmic domains [J].
Feng, XH ;
Baumgartner, JW ;
Hazelbauer, GL .
JOURNAL OF BACTERIOLOGY, 1997, 179 (21) :6714-6720
[10]   ASSEMBLY OF AN MCP RECEPTOR, CHEW, AND KINASE CHEA COMPLEX IN THE BACTERIAL CHEMOTAXIS SIGNAL TRANSDUCTION PATHWAY [J].
GEGNER, JA ;
GRAHAM, DR ;
ROTH, AF ;
DAHLQUIST, FW .
CELL, 1992, 70 (06) :975-982