The pH dependence of late sodium current in large sensory neurons

被引:37
作者
Baker, MD [1 ]
Bostock, H [1 ]
机构
[1] Inst Neurol, Sobell Dept Neurophysiol, London WC1N 3BG, England
基金
英国医学研究理事会;
关键词
patch-clamp; Na+ channel; pH; sensory neuron; dorsal root ganglia; rat;
D O I
10.1016/S0306-4522(99)00058-5
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The effects of altering extracellular pH on late Na+ currents were investigated in large dorsal root ganglion neurons from rats (100-300 g), using patch-clamp techniques. The late current amplitude was steeply dependent upon pH over a range which included normal physiological values: raising the pH from 7.3 to 8.3 approximately doubled the amplitude. Whole-cell late currents 60 ms after depolarization to -30 mV were blocked with an apparent pK(a) of 6.96. The pH-dependent changes in current amplitude could not be accounted for by the effects of altered surface charge. In recordings of unitary Na+ currents from outside-out membrane patches, acidification promoted channel opening to a reduced conductance level, near one-half of its maximal value. Acidification to pH < 6.0 also changed the kinetics of the current recruited with the lowest threshold from non-inactivating to inactivating, with the elimination of late openings. We conclude that lowering pH from an initial alkaline or neutral value blocks late Na+ current by reducing the number of contributing channels while also reducing the single channel conductance. The pH dependence of late Na+ current helps to explain clinically relevant changes in neuronal excitability in response to small (i.e. <1 unit) perturbations in extracellular pH. (C) 1999 IBRO. Published by Elsevier Science Ltd.
引用
收藏
页码:1119 / 1130
页数:12
相关论文
共 35 条
[1]   SUBTHRESHOLD NA+-DEPENDENT THETA-LIKE RHYTHMICITY IN STELLATE CELLS OF ENTORHINAL CORTEX LAYER-II [J].
ALONSO, A ;
LLINAS, RR .
NATURE, 1989, 342 (6246) :175-177
[2]  
ALZHEIMER C, 1993, J NEUROSCI, V13, P660
[3]   Inactivation of macroscopic late Na+ current and characteristics of unitary late Na+ currents in sensory neurons [J].
Baker, MD ;
Bostock, H .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (05) :2538-2549
[4]   Low-threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture [J].
Baker, MD ;
Bostock, H .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 77 (03) :1503-1513
[5]  
Baker MD, 1997, J PHYSIOL-LONDON, V504P, pP49
[6]   Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs [J].
Black, JA ;
DibHajj, S ;
McNabola, K ;
Jeste, S ;
Rizzo, MA ;
Kocsis, JD ;
Waxman, SG .
MOLECULAR BRAIN RESEARCH, 1996, 43 (1-2) :117-131
[7]   Latent addition in motor and sensory fibres of human peripheral nerve [J].
Bostock, H ;
Rothwell, JC .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 498 (01) :277-294
[8]   ELECTROPHYSIOLOGICAL PROPERTIES OF GUINEA-PIG TRIGEMINAL MOTONEURONS RECORDED IN-VITRO [J].
CHANDLER, SH ;
HSAIO, CF ;
INOUE, T ;
GOLDBERG, LJ .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (01) :129-145
[9]   Molecular basis of proton block of L-type Ca2+ channels [J].
Chen, XH ;
Bezprozvanny, I ;
Tsien, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 108 (05) :363-374
[10]  
CHIU SY, 1979, J PHYSIOL-LONDON, V292, P149, DOI 10.1113/jphysiol.1979.sp012843