A low-temperature method to produce highly reduced graphene oxide

被引:493
作者
Feng, Hongbin [1 ]
Cheng, Rui [2 ]
Zhao, Xin [1 ]
Duan, Xiangfeng [3 ]
Li, Jinghong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing Key Lab Analyt Methods & Instrumentat, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
中国国家自然科学基金;
关键词
GRAPHITE OXIDE; HIGH-PERFORMANCE; HIGH-THROUGHPUT; REDUCTION; FILMS; TRANSPARENT; SHEETS;
D O I
10.1038/ncomms2555
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chemical reduction of graphene oxide can be used to produce large quantities of reduced graphene oxide for potential application in electronics, optoelectronics, composite materials and energy-storage devices. Here we report a highly efficient one-pot reduction of graphene oxide using a sodium-ammonia solution as the reducing agent. The solvated electrons in sodium-ammonia solution can effectively facilitate the de-oxygenation of graphene oxide and the restoration of pi-conjugation to produce reduced graphene oxide samples with an oxygen content of 5.6 wt%. Electrical characterization of single reduced graphene oxide flakes demonstrates a high hole mobility of 123 cm(2) Vs(-1). In addition, we show that the pre-formed graphene oxide thin film can be directly reduced to form reduced graphene oxide film with a combined low sheet resistance (similar to 350 Omega per square with similar to 80% transmittance). Our study demonstrates a new, low-temperature solution processing approach to high-quality graphene materials with lowest sheet resistance and highest carrier mobility.
引用
收藏
页数:7
相关论文
共 41 条
[1]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/NNANO.2010.154, 10.1038/nnano.2010.154]
[2]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[3]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[4]   Ultrathick freestanding aligned carbon nanotube films [J].
Ci, Lijie ;
Manikoth, Shaijumon M. ;
Li, Xuesong ;
Vajtai, Robert ;
Ajayan, Pulickel M. .
ADVANCED MATERIALS, 2007, 19 (20) :3300-+
[5]   Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J].
Cote, Laura J. ;
Kim, Franklin ;
Huang, Jiaxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) :1043-1049
[6]   MECHANISTIC STUDIES OF METAL-AMMONIA REDUCTIONS [J].
DEWALD, RR .
JOURNAL OF PHYSICAL CHEMISTRY, 1975, 79 (26) :3044-3049
[7]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[8]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[9]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[10]   An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder [J].
Fan, Zhuangjun ;
Wang, Kai ;
Wei, Tong ;
Yan, Jun ;
Song, Liping ;
Shao, Bo .
CARBON, 2010, 48 (05) :1686-1689