Entropy and topology of the Kerr-de Sitter black hole

被引:10
作者
Chen, SB
Jing, JL [1 ]
机构
[1] Hunan Normal Univ, Inst Phys, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Dept Phys, Changsha 410081, Peoples R China
来源
CHINESE PHYSICS | 2002年 / 11卷 / 01期
关键词
entropy of black hole; constrained gravitational instanton; Euler number;
D O I
10.1088/1009-1963/11/1/318
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the path integral method of Gibbons and Hawking, the entropy of the Kerr-de Sitter black hole is investigated under the microcanonical ensemble. We find that the entropy is one eighth the sum of the products of the Euler number of its cosmological horizon and event horizon with their respective areas. It is shown that the origin of the entropy of the black hole is related to the topology of its instanton.
引用
收藏
页码:87 / 90
页数:4
相关论文
共 25 条
[1]   BLACK HOLES AND SECOND LAW [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1972, 4 (15) :737-+
[2]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[3]   ON THE CURVATURA INTEGRA IN A RIEMANNIAN MANIFOLD [J].
CHERN, SS .
ANNALS OF MATHEMATICS, 1945, 46 (04) :674-684
[4]   A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds [J].
Chern, SS .
ANNALS OF MATHEMATICS, 1944, 45 :747-752
[5]   GRAVITATIONAL ENTROPY - BEYOND THE BLACK-HOLE [J].
DAVIES, PCW ;
FORD, LH ;
PAGE, DN .
PHYSICAL REVIEW D, 1986, 34 (06) :1700-1707
[6]  
EGUCHI T, 1980, PHYS REP, V66, P6
[7]   TOPOLOGY, ENTROPY, AND WITTEN INDEX OF DILATON BLACK-HOLES [J].
GIBBONS, GW ;
KALLOSH, RE .
PHYSICAL REVIEW D, 1995, 51 (06) :2839-2862
[8]   ACTION INTEGRALS AND PARTITION-FUNCTIONS IN QUANTUM GRAVITY [J].
GIBBONS, GW ;
HAWKING, SW .
PHYSICAL REVIEW D, 1977, 15 (10) :2752-2756
[9]   COSMOLOGICAL EVENT HORIZONS, THERMODYNAMICS, AND PARTICLE CREATION [J].
GIBBONS, GW ;
HAWKING, SW .
PHYSICAL REVIEW D, 1977, 15 (10) :2738-2751
[10]   ENTROPY, AREA, AND BLACK-HOLE PAIRS [J].
HAWKING, SW ;
HOROWITZ, GT ;
ROSS, SF .
PHYSICAL REVIEW D, 1995, 51 (08) :4302-4314